i_ UM1523
YI User manual

Getting started with software and firmware environments for the

STM32FODISCOVERY kit

March 2012

Introduction

This document describes the software, firmware environment and development
recommendations required to build an application around the STM32FODISCOVERY board.

It presents the firmware applications package provided within this board with details on its
architecture and contents. It provides guidelines to novice users on how to build and run a
sample application and allows them to create and build their own application.

This document is structured as follows:

m System requirements to use this board and how to run the built-in demonstration are
provided in Section 1: Getting started.

m Section 2 describes the firmware applications package.

m Section 4 presents development toolchain installation and overview of ST-LINK/V2
interface.

m Section 5, Section 6, Section 7, and Section 8introduce how to use the following software
development toolchains:

IAR Embedded Workbench® for ARM (EWARM) by IAR Systems

Microcontroller Development Kit for ARM (MDK-ARM) by Keil™

TrueSTUDIO® by Atollic

TASKING VX-toolset for ARM Cortex by Altium

Although this user manual cannot cover all the topics relevant to software development
environments, it demonstrates the first basic steps necessary to get started with the
compilers/debuggers.

Table 1 lists the microcontrollers and development tools concerned by this application note.

Table 1. Applicable products and tools

Type Applicable products
Microcontrollers STM32 FO series Entry-level Cortex™-MO microcontrollers
Development tools STM32F0DISCOVERY evaluation board and discovery kit

Reference documents

m STM32FODISCOVERY high-performance discovery board data brief
m STM32FODISCOVERY peripherals firmware examples (AN4062)

m STM32FO0xx reference manual (RM0091)
m STM32F051x4 STM32F051x6 STM32F051x8 datasheet

The above documents are available at www.st.com/stm32f0-discovery.

Doc ID 022896 Rev 1 1/46

www.st.com

http://www.st.com

Contents UM1523

Contents
1 Gettingstarted i e e 6
1.1 Systemrequirements 6
1.2 Running the built-in demonstration 6
2 Description of the firmwarepackage 7
2.1 Libraries folder 7
211 CMSIS subfolder 7
2.1.2 STM32F0xx_StdPeriph_Driver subfolder 8
2.2 Project folder 8
2.21 Demonstration subfolder 8
2.2.2 Master_Workspace subfolder 8
223 Peripheral_Examples subfolder 8
2.3 Utilities folder 8
3 Binary images for reprogramming firmware applications 9
4 ST-LINK/V2 installation and development 10
5 Using IAR Embedded Workbench® for ARM 11
5.1 Building an existing EWARM project 11
5.2 Debugging and running your EWARM project 12
5.3 Creating your first application using the EWARM toolchain 14
5.3.1 Managing sourcefiles 14
5.3.2 Configuring projectoptions 16
6 Using MDK-ARM Microcontroller Development Kit by Keil™ 20
6.1 Building an existing MDK-ARM project 20
6.2 Debugging and running your MDK-ARM project 21
6.3 Creating your first application using the MDK-ARM toolchain 23
6.3.1 Managing sourcefiles 23
6.3.2 Configuring project options 25
7 Using Atollic TrueSTUDIO®ccciiiiiinnnnrrnnnnnnnns 28
7.1 Building an existing TrueSTUDIO project 28

2/46 Doc ID 022896 Rev 1 KYI

UM1523 Contents
7.2 Debugging and running your TrueSTUDIO project 31
7.3 Creating your first application using TrueSTUDIO toolchain 32
8 USINg TASKINGottt ittt ittt s nnnnnnnnnns 36
8.1 Building an existing TASKING project 36
8.2 Debugging and running your TASKING project 40
8.3 Creating your first application using TASKING toolchain 41
9 Revision historyttt i e nnnns 45
Ays Doc ID 022896 Rev 1 3/46

List of figures UM1523

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.

4/46

Hardware environment e 6
Hardware environment e 7
IAR Embedded Workbench IDE (Integrated Design Environment) 11
EWARM project successfully compiled. 12
Download and Debug button 12
IAR Embedded Workbench debugger screen 13
GO bULON . e 13
Create New Projectdialogbox 14
IDE INterface . . . o e e 14
main.cexample file. e e 15
Adding filesto a project e 15
New project file tree structure. e 15
Configuring project OptioNS oo e 16
Generaloptions > Targettab 16
Linker > Configtab 17
Linker configuration file editor dialog box > Vector Tabletab....................... 17
Linker configuration file editor dialog box > Memory Regionstab 17
C/C++ Compiler > Preprocessortab. i 18
Debugger > Setuptab. 18
Select Flash loaderso e e e 18
ST-Link communication protocol e 19
MDK-ARM pVision4 IDE environment 20
Build Output - MDK-ARM pVision4 project successfully compiled 21
Starting an MDK-ARM pVision4 debugging session 21
MDK-ARM IDE WOrKSPacCet e e e e 22
Creating a Nnew Projectot e e 23
Device selection dialogbox 23
Copy the STM32 Startup Code dialog boxt e 23
main.cexample file. e e 24
Adding source fileso e 24
New project file tree structure e 24
Target Options dialog box - Targettab. 25
Target Options dialog box - Debugtab. i, 26
Target Options dialog box - Utilitiestab 26
MDK-ARM pVision4 project successfully built L. 27
TrueSTUDIO workspace launcher dialogbox 28
Atollic TrueSTUDIO®/STM32 Lite welcome SCreent 28
Atollic TrueSTUDIO®/STM32 Lite import source selectdialogbox 29
Atollic TrueSTUDIO®/STM32 Lite import projects dialogbox 30
TrueSTUDIO® project successfully compiled. i, 30
TrueSTUDIO Debug Configuration dialogbox o i i, 31
TrueSTUDIO Debug Windowot 32
TrueSTUDIO workspace launcher dialogbox 33
TrueSTUDIO® C Project dialog box.o s 33
TrueSTUDIO® Build Settings dialog box e 34
TrueSTUDIO® Misc Settings dialog box 35
TrueSTUDIO® project successfully built i, 35
TASKING workspace launcher dialogbox i 36

Doc ID 022896 Rev 1 KYI

UM1523

List of figures

Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.

TASKING VX-Toolset for ARM Cortex welcome screen., 36
TASKING import source selectdialogbox i 37
TASKING import projects dialog box 38
TASKING project successfully compiled i 39
TASKING debug WindOWot e 40
TASKING Workspace Launcher dialogbox i, 41
TASKING New C/C++ Projectdialogbox.o 41
Processor selection e 42
Debug configuration 42
TASKING Import dialog boxX oo 43
Adding a new source file Window... 44
Tasking project successfully built 44

Doc ID 022896 Rev 1 5/46

Getting started UM1523

1.1

1.2

6/46

Getting started

System requirements

Before running your application, you should establish the connection with the
STM32FODISCOVERY board as following.

Figure 1. Hardware environment

To run and develop any firmware applications on your STM32FO0DISCOVERY board, the
minimum requirements are as follows:

® Windows PC (2000, XP, Vista, 7)

e 'USB type A to Mini-B' cable, used to power the board (through USB connector CN1)
from host PC and connect to the embedded ST-LINK/V2 for debugging and
programming.

Running the built-in demonstration

The board comes with the demonstration firmware preloaded in the Flash memory. Follow
the steps below to run it:

® Check the jumper position on the board, JP2 on, CN2 on (Discovery selected).

® Connect the STM32F0-DISCOVERY board to a PC with a 'USB type A to Mini-B' cable
through USB connector CN1 to power the board. Then red LEDs LED1 (PWR) and
LED2 (COM) light up and green LED3 blinks.

® Press user button B1 (Button left corner of the board). The blinking of green LED3
changes according to clicks on user button B1.

® Each click on the USER push-button is confirmed by blue LEDA4.

Doc ID 022896 Rev 1 K‘!I

UM1523

Description of the firmware package

2

2.1

2.1.1

Description of the firmware package

The STM32FODISCOVERY firmware applications are provided in one single package and
supplied in one single zip file. The extraction of the zip file generates one folder,
STM32F0-Discovery_FW_VX.Y.Z, which contains the following subfolders:

Figure 2. Hardware environment

STMIZFO0-Discovery W _Ya.¥.2
+) _htmresc
=l) Libraries
R
=l |) STM32F0xx_StdPeriph_Driver
I inc
I src
= [} Project
+ |) Demonstration
+) Master _\Waorkspace
+ |) Peripheral_Examples
=1 [Utilitias
+) STMI2F0-Disconvery

1. VX.Y.Z refer to the package version, ex. V1.0.0

Libraries folder
This folder contains the Hardware Abstraction Layer (HAL) for STM32F0xx devices.

CMSIS subfolder
This subfolder contains the STM32F0xx and Cortex-M0 CMSIS files.

Cortex-M0 CMSIS files consist of:

® Core Peripheral Access Layer: contains name definitions, address definitions and
helper functions to access Cortex-MO core registers and peripherals. It defines also a
device independent interface for RTOS Kernels that includes debug channel definitions.

STM32F0xx CMSIS files consist of:

® stm32fOxx.h: contains the definitions of all peripheral registers, bits, and memory
mapping for STM32F0xx devices. The file is the unique include file used in the
application programmer C source code, usually in main.c.

® system_stm32f0Oxx.c/.h: contains the system clock configuration for STM32F0xx
devices. It exports SystemInit () function which sets up the system clock source,
PLL multiplier and divider factors, AHB/APBXx prescalers and Flash settings. This
function is called at startup just after reset and before connecting to the main program.
The call is made inside the startup_stm32fOxx.s file.

® startup_stm32f0Oxx.s: provides the Cortex-MO startup code and interrupt vectors for all
STM32F0xx device interrupt handlers.

Doc ID 022896 Rev 1 7/46

Description of the firmware package UM1523

2.1.2

2.2

2.2.1

2.2.2

2.2.3

2.3

8/46

STM32F0xx_StdPeriph_Driver subfolder

This subfolder contains sources of STM32F0xx peripheral drivers.

Each driver consists of a set of routines and data structures covering all peripheral
functionalities. The development of each driver is driven by a common API (application
programming interface) which standardizes the driver structure, the functions and the
parameter names.

Each peripheral has a source code file, stm32f0xx_ppp.c, and a header file,
stm32f0xx_ppp.h. The stm32f0xx_ppp.c file contains all the firmware functions required to
use the PPP peripheral.

Project folder
This folder contains the source files of the STM32FODISCOVERY firmware applications.

Demonstration subfolder

This subfolder contains the demonstration source files with preconfigured project for
EWARM, MDK-ARM, TrueSTUDIO and TASKING toolchains.

A binary image (*.hex) of this demonstration is provided under Binary subfolder. You can use
any in-system programming tool to reprogram the demonstration using this binary image.

Master_Workspace subfolder

This subfolder contains, for some toolchains, a multi-project workspace allowing you to
manage all the available projects (provided under the subfolders listed below) from a single
workspace window.

Peripheral_Examples subfolder

This subfolder contains a set of examples for some peripherals with preconfigured projects
for EWARM, MDK-ARM, TrueSTUDIO and TASKING toolchains. See Section 4 and
STM32FODISCOVERY peripheral firmware examples, AN4062, for further details.

Utilities folder

This folder contains the abstraction layer for the STM32FODISCOVERY hardware. It
provides the following drivers:

® stm32f0_discovery.c: provides functions to manage the user push-button and 2 LEDs
(LED3 and LED4).

Doc ID 022896 Rev 1 KYI

UM1523 Binary images for reprogramming firmware applications

3 Binary images for reprogramming firmware
applications

This section describes how to use the provided binary images to reprogram the firmware
applications. The STM32FODISCOVERY firmware package contains binary images (*.hex)
of the provided applications under Binary subfolder. You can use any in-system
programming tool to reprogram the demonstration using this binary image.

to reprogram the firmware applications, use the “in-system programming tool” and:

1. Connect the STM32FODISCOVERY board to a PC with a 'USB type A to Mini-B' cable
through USB connector CN1 to power the board.

2. Make sure that the embedded ST-LINK/V2 is configured for in-system programming
(both CN3 jumpers ON).

3. Use *.hex binary (for example,
\Project\Demonstration\Binary\STM32F0-Discovery_Demonstration_V1.0.0.hex) with
your preferred in-system programming tool to reprogram the demonstration firmware
(ex. STM32 ST-LINK Utility, available for download from www.st.com).

IYI Doc ID 022896 Rev 1 9/46

ST-LINK/V2 installation and development UM1523

4

Note:

10/46

ST-LINK/V2 installation and development

STM32FODISCOVERY board includes an ST-LINK/V2 embedded debug tool interface that
is supported by the following software toolchains:

IAR™ Embedded Workbench for ARM (EWARM) available from www.iar.com
The toolchain is installed by default in the C:\Program Files\|IAR Systems\Embedded
Workbench 6.30 directory on the PC’s local hard disk.

After installing EWARM, install the ST-LINK/V2 driver by running the
ST-Link_V2_USB.exe from [IAR_INSTALL_DIRECTORY]\Embedded Workbench
6.30\arm\drivers\ST-Link \ST-Link_V2_USBdriver.exe

RealView Microcontroller Development Kit (MDK-ARM) toolchain available from
www.keil.com

The toolchain is installed by default in the C:\Keil directory on the PC’s local hard disk;
the installer creates a start menu pVision4 shortcut.

When connecting the ST-LINK/V2 tool, the PC detects new hardware and asks to install
the ST-LINK_V2_USB driver. The “Found New Hardware wizard” appears and guides
you through the steps needed to install the driver from the recommended location.
Atollic TrueSTUDIO® STM32 available from www.atollic.com

The toolchain is installed by default in the C:\Program Files\Atollic directory on the PC’s
local hard disk.

The ST-Link_V2_USB.exe is installed automatically when installing the software
toolchain.

Altium™ TASKING VX-toolset for ARM® Cortex-M available from www.tasking.com
The toolchain is installed by default in the “C:\Program Files\TASKING directory on the

PC’s local hard disk. The ST-Link_V2_USB.exe is installed automatically when
installing the software toolchain.

The embedded ST-LINK/V2 supports only SWD interface for STM32 devices.

Refer to the firmware package release notes for the version of the supporting development
toolchains.

Doc ID 022896 Rev 1 KYI

UM1523 Using IAR Embedded Workbench® for ARM

5 Using IAR Embedded Workbench® for ARM

5.1 Building an existing EWARM project

The following is the procedure for building an existing EWARM project.
1. Open the IAR Embedded Workbench® for ARM (EWARM).

Figure 3 shows the basic names of the windows referred to in this document.
Figure 3. IAR Embedded Workbench IDE (Integrated Design Environment)

D& L |

Files Window
[

Workspace Window
[+

Messages

Build Window

|

IReadv

2. Inthe File menu, select Open and click Workspace to display the Open Workspace
dialog box. Browse to select the demonstration workspace file and click Open to launch
it in the Project window.

3. Inthe Project menu, select Rebuild All to compile your project.

IYI Doc ID 022896 Rev 1 11/46

Using IAR Embedded Workbench® for ARM UM1523

5.2

12/46

4. If your project is successfully compiled, the following window in Figure 4 is displayed.
Figure 4. EWARM project successfully compiled

x

hMessages File 25

Errars: none
YWarnings: none

Link tirne: 0.05 (CPU) 0.03
(elapsed)

Total number of errors: 0
= Taotal number of warnings: 0
= W

Ready

Debugging and running your EWARM project

In the IAR Embedded Workbench IDE, from the Project menu, select Download and
Debug or, alternatively, click the Download and Debug button the in toolbar, to program the
Flash memory and begin debugging.

Figure 5. Download and Debug button

T A
e
T X

ﬁDownload and Debug

The debugger in the IAR Embedded Workbench can be used to debug source code at C
and assembly levels, set breakpoints, monitor individual variables and watch events during
the code execution.

Doc ID 022896 Rev 1 [‘II

UM1523 Using IAR Embedded Workbench® for ARM

Figure 6. IAR Embedded Workbench debugger screen

% STM32F0 Discavery_Demo - IAR Embedded Workbench IDE EEX
File Edit View Project Debug Disassembly ST-LINK Toals ‘Window Help
DSL@ S8 =8 * R Y
Z B2 LEEE X
W0
,@ * | striazf0xe_conf.h | stm3zfto:_it.c | |stm32f0xx7\t‘h | system_stm3zFons:,c | main.h | stm32F0xx_dma.c x
STM32FD_Discovery v| == Goto v E
Files fnom * Gorief Main program. Disassembly ~
OISTMI2F0-.. v :g?"‘:”l :"“E 0x83000200° Dx4771
Fmcicusis L e B WUDG_IROHa:
FacEwaPM i, PR THDG_TRQHand ler
FmCasTMI2 E . 0x80002cs: Oxs7
[FECISTMI2FDx.. RCC_ClockaTypeDef ROC_Clocks: int nain(veid)
Faruser {
L@ ouput ## Configure LED3 and LED4 on STMIZFO-Discovery #/
STH_EVAL_LEDInit(LED3) ;
STH_EVAL_LEDInit{LED4) ; 0x90002d2: Dxb0&'
STH_EVAL_TEDInit (L]
#* Initialize User Button on STM3ZF0-Discovery */ 0x00002d4: Dx2001
STH_EVAL_PBInit (BUTTON_USER, BUTTON_NODE_GPIO) ; 0x80002d6: Dx£00I
STH_EVAL LEDInit (Ll
/% SysTick end of count event each lus */ 0=80002da: 0200
RCC_GetClocksFreg(sRCC_Clocks); 0x80002ds: O=fO0!
SysTick_Config(RCC_Clocks.HCLK Frequency / 1000) STH EVAL PEInit (DU
A% Select HSI a3 system clock sowrce */ 0x80002e0; Da210)
RCC SFSCIECanFin (ROT SVSCIESmres HSTY - o 0x80002e2: 0x2001%
[sTM32F0 Discoven,_Demo e 3 |8 3
x
Goto (008100000 v [Memay v = |
08000000 20000428 08000821 08000909 0800090 -~
08000010 0DODOOOD D0DOO00D DODDODOD 00000000
08000020 0DODODOD 00000000 DODDOOOD 0200090d
08000030 0DODODOD D00D0O00D DEDDDS0F 02000911
08000040 0B000ZcE 080005af DBDDNG3f 080008=?
08000050 0BOD0SE3 08000925 DEOO0IZ? 08000929
08000060 0800092h 08000924 DEDO0IZE 08000931
08000070 08000933 08000935 DE0O0I37 08000939
08000080 0800093b 0800033d 0000ODDD 0200093f
08000090 08000941 08000943 DEDDNILE 08000947
080000a0 08000943 0800034b DE000I4d DE00094f
080000b0 08000951 00000000 DEDO0IS3 00000000
08000000 22004347 7008700a 43104770 47706008 L
Ready pos 08000003 HUM ovR B

To run your application, from the Debug menu, select Go. Alternatively, click the Go button
in the toolbar to run your application.

Figure 7. Go button

IYI Doc ID 022896 Rev 1 13/46

Using IAR Embedded Workbench® for ARM UM1523

5.3
5.3.1

14/46

Creating your first application using the EWARM toolchain
Managing source files

Follow these steps to manage source files.
1. In the Project menu, select Create New Project and click OK to save your settings.
Figure 8. Create New Project dialog box

Create New Project E|

Toal chain: |AF!M “ |

Project templates:

Emply project
asm
C++
C
DLE
Erternally built executable

Description:

Creates an empty project.

OF. l ’ Cancel]

2. Name the project (for example, NewProject.ewp) and click Save to display the IDE
interface.

Figure 9. IDE interface

#% IAR Embedded Workbench DE (= |[B[X]

File Edit ‘iew Project Simulator Tools Window
Help

D@
pacs

[ebug

Files e
INewProje... +

HewProject

|

Messages
Configquration is up-to-date.

(=0 |

[~
|~
x| <

To create a new source file, in the File menu, open New and select File to open an empty
editor window where you can enter your source code.

Doc ID 022896 Rev 1 IYI

UM1523

Using IAR Embedded Workbench® for ARM

The IAR Embedded Workbench enables C color syntax highlighting when you save your file
using the dialog File > Save As... under a filename with the *.c extension. In Figure 10:
main.c example file, the file is saved as main.c.

Figure 10. main.c example file

(man.c [i
int main{wroid) f
i
return(0);
1
-
O >

Once you have created your source file, you can add this file to your project by opening the

Project menu, selecting Add and adding the selected file as in Figure 11: Adding files to a
project.

Figure 11. Adding files to a project

% 1AR Embedded Workbench IDE =3
File Edit Wiew Project Simulator Tools Window Help
=== :
‘Warkspace I | v
|Debug "| int main (vodid) f
Files el =t o
—_ return
BE Options...
Take }
Rebuild all
Clean
pies..
N add "main.c”
EMOE add Group...
I_ v
MEWRI Source Code Control b [Fof(C] € b4
Addthe sl Fie properties...

If the file is added successfully, Figure 12: New project file tree structure is displayed.
Figure 12. New project file tree structure

Files fn| B
Efslnewproj- | v | |
main.c *

Doc ID 022896 Rev 1 15/46

Using IAR Embedded Workbench® for ARM

UM1523

5.3.2

16/46

Configuring project options

Follow these steps to configure project options.

1.

Figure 13. Configuring project options

In the Project Editor, right-click on the project name and select Options... to display the
Options dialog box as in Figure 13.

Files

newproi-_

Take

Rebuild Al
Clean

2.

Figure 14. General options > Target tab

In the Options dialog box, select the General Options category, open the Target tab
and select Device - ST -STM32F0xx.

Options for, node “STM32F0-Discovery_Demo™

Category:

General Options
CIC++ Compiler
Assembler
Output Corvverter
Custom Build
Build Actions
Lirker
Debugger

Simulatar

Angel

GDE Server

IAR. ROM-monitar
J-Linkf3-Trace

TI Stellaris
Macraigor

PE micro

RDI

IThGjet

ST-LIMNK
Third-Party Driver
TI ¥D3100

Target | Output | Library Configuration | Library Options | MISR&-C;200 4 #

Processor variant

(O Core

& Device | 3T STM32F 050

Endian mode

(@) Little
O Big

Actel

0K

MNone

AnalogDevices
akrmel

Cirrus
EnergyMicro
Epson
Faraday
Freescals
Fuiitsu
Hilscher
Holtek

Intel

Marvell
Micronas
MetSilicon
MHuvaton

HXP

[0/ 4}
OMSemiconduckor
Samsung
Socle

TexasInstruments
Toshiba

4
4
»
»
»
4
4
4
4
»
»
»
3
3
4
»
»
»
»
3
4
3

L3
L3

3T SPEAr300
3T SPEAr310
3T SPEAr3Z0
3T SPEArG0N

ST STME2F100x4
ST STM3ZF100x8
3T 3TM32F100x5
3T STMIZF100xE
3T STMIZF100xC
ST STMIZF100xD
ST STMEZF100E
ST STME2F105x8
3T 3TM32F105:E
3T STM32F105xC
3T STMIZF107xE
3T STMIZF107xC
ST STMEZF 10t
ST STME2F10xx6
3T STM3ZF10xxE
3T STM3ZF10:xxE
3T STMIZF 100
3T STMIZF 100D
ST STMEZF10xxE
ST STMEZF10F
3T STM3EF10xxG
3T 3TM3ZF205rx
3T STMIZF205vx
3T STM3ZF2052x
ST STMIZF207 0
aT STM32F215rx
aT STME2F2152x
ST STM3EFZ17xx
AT STM32Fdunx
ST STM3ZL151x6
ST STM3EL151x8
AT STM32L151E
ST STME2L151xC
ST STM3ELLS1x=D
5T STM3ELLSEx6
aT aTM3ZL152x8
ST STM3ZL152:E
ST STM32L152xC
-

Doc ID 022896 Rev 1

UM1523 Using IAR Embedded Workbench® for ARM

3. Select the Linker category and open the Config tab; in the Linker configuration file

pane, select Override default and click Edit to display the Linker configuration file
editor.

Figure 15. Linker > Config tab

Assembler

Qukput Correerter Library Input || Output || List ftdefine | Diagnostics
Custom Build

Eiuild ki

Linker configuration file

[] Overide default

Debugger
Sirmulator

4.

In the Linker configuration file editor dialog box, open the Vector Table tab and set
the .intvec.start variable to 0x08000000.

Figure 16. Linker configuration file editor dialog box > Vector Table tab

Linker configuration file editor

Vector Table) Memary Regions || Stack{Heap Sizes

.intvec start | 0x0S000000

I Save H Cancel]

5. Open the Memory Regions tab, and enter the variables as shown in Figure 17.

Figure 17. Linker configuration file editor dialog box > Memory Regions tab

Linker configuration file editor ﬁ|

Vactor Table | Memary Regions | StackfHeap Sizes

Stark End:
OxDS0FFAFF

i 0G000000

RAM Q200000 D= 20020000

l Save] Cancel |

6. Click Save to save the linker settings automatically in the Project directory.

Doc ID 022896 Rev 1 17/46

Using IAR Embedded Workbench® for ARM

UM1523

If your source files include header files, select the C/C++ Compiler category, open the
Preprocessor tab, and specify their paths as shown in Figure 18. The path of the
include directory is a relative path, and always starts with the project directory location
referenced by $PROJ DIR$

Figure 18. C/C++ Compiler > Preprocessor tab

CJC++ Compiler
Azzembler
Sutput Converter Language | Code | Optimizations | Ookput || List NI
Custom Build
Build Actions [lgnaore standard include directories $TOOLKIT_DIR$AMEY
Lirker
Debugger Additional include directories: [one per ling]
Simulator
angel
GDE Server
14R RCM-maonitar

8.

To set up the ST-Link embedded debug tool interface, select the Debugger category,
open the Setup tab and, from the drop-down Driver menu, select ST-Link as shown in
Figure 19.

Figure 19. Debugger > Setup tab

Assembler

Qukput Converter Setup | Download | Images | Extra Optionz | Plugins
Custom Build

Build Actions Diriver Fun ta

Linker ST-Link main

Debugger

Sirnulakar Setup macrosg
Angel [Use macio files)

GDE Server

9.

Open the Debugger tab and select Use flash loader(s) as shown in Figure 20.

Figure 20. Select Flash loaders

Cutput Converter Setup | Download | Images | Extra Options | Plugins

Custam Build

Build Actions
i [Werify download

@ [[1 Suppress download

angel {#1Use flash loaders>

GDE Server [Orverride default .board file

[&sttach to program

18/46

Doc ID 022896 Rev 1

UM1523 Using IAR Embedded Workbench® for ARM

10. Select the ST-Link category, open the ST-Link tab and select SWD as the connection
protocol as shown in Figure 21.

Figure 21. ST-Link communication protocol

Assembler
Qukput Converter ST-Link
Custom Build
Build Actions
Linker

Debugger
Simulator O JTAG

angel @
GDE Server

TR ROM-monikar
J-Link{1-Trace
LMI FTDI

Macraigar
ROIL

TElrg—Ear!y griver

11. Click OK to save the project settings.

12. To build your project, follow the instructions given in Section 5.1: Building an existing
EWARM project on page 11.

13. Before running your application, establish the connection with the
STM32FO0DISCOVERY board as described in Section 1: Getting started.

14. To program the Flash memory and begin debugging, follow the instructions given in
Section 5.2: Debugging and running your EWARM project on page 12.

Interface

IYI Doc ID 022896 Rev 1 19/46

Using MDK-ARM Microcontroller Development Kit by Keil™

UM1523

6 Using MDK-ARM Microcontroller Development Kit by

Keil™

6.1 Building an existing MDK-ARM project
Follow these steps to build an existing MDK-ARM project.

1. Open the MDK-ARM pVision4 IDE, debugger, and simulation environment.
Figure 22: MDK-ARM uVision4 IDE environment shows the basic names of the

windows referred to in this section.

Figure 22. MDK-ARM pVision4 IDE environment

AEH)|

Eile Edit Wew Project Flash Debug Peripherals Tools 3SYCS Window Help

BN - NEEEEY . W W

-l L)

i g L e

Froject v ax

Files Window

O

Project Window

) S5p

OQutput Window

e

Find in Files iy

o

E=lBuild output Imﬁnd in Files

2. Inthe Project menu, select Open Project... to display the Select Project File dialog
box. Browse to select the STM32F0-Discovery.uvproj project file and click Open to

launch it in the Project window.

3. Inthe Project menu, select Rebuild all target files to compile your project.

20/46 Doc ID 022896 Rev 1

4

UM1523

Using MDK-ARM Microcontroller Development Kit by Keil™

6.2

4. If your project is successfully compiled, the following Build Output window (Figure 23:

Build Output - MDK-ARM pVision4 project successfully compiled) is displayed.
Figure 23. Build Output - MDK-ARM pVision4 project successfully compiled

Build Dutput =
compiling stm3Zf0_discovery.c... =

compiling Stm3Zf0xx_syscfg.c...
compiling Stm3Zf0xx_misc.c...
compiling Stm3Zf0xx_ade.c. ..
compiling Stm3Zf0xx_dac.c...
compiling stm32£0xx_dma.c. ..
compiling Stm3ZE0xx_exti.c...
compiling stm3Zf0xx_flash.c...
compiling Stm3Zf0xx_gpio.c...
compiling Stm3Zf0xx_iZe.o...
compiling Stm3ZE0xx_reoc.c...
compiling Stm3Zf0xx_spi.c...
compiling Stm3ZE0xx_tim.c...
assernbling startup stm3ZE0xx.sS...

linking. ..
Program Size: Code=2000 RO-data=252 RW-data=36 ZI-data=1028
"4 STH32F0-Discovery DemolSTM32FO-Discovery Demo.axf” - O Error(s), O Warning(s).

Debugging and running your MDK-ARM project

In the MDK-ARM pVision4 IDE, click the magnifying glass to program the Flash memory

and begin debugging as shown below in Figure 24.

Figure 24. Starting an MDK-ARM pVision4 debugging session

@ S & [Fx

@1 Start,/Stop Debug Session {Ctrl+F5)
l Enter or leave a debug session

Doc ID 022896 Rev 1

21/46

Using MDK-ARM Microcontroller Development Kit by Keil™

UM1523

The debugger in the MDK-ARM IDE can be used to debug source code at C and assembly
levels, set breakpoints, monitor individual variables and watch events during the code

execution as shown below in Figure 25.
Figure 25. MDK-ARM IDE workspace

DSEOVERSS

[VasionEs

File

Edit

ERER

Yieww

Project

@00 0 5> | O BEEla]

Flash Debug

Help

Tools

Peripherals Extension & Extension B SWCS Window

Registers ¥ ax
Riegister 1Value I ST A
CUBRE SEi /% Enable PUR and GPIOx Clocks */
o:0x08000455 B570 PUSH {rd-re6, 1r}
595 RCC_APEl1PeriphClockCmd (RCC_LPE1Periph PWR, ENAELE):
0%00000000 Ox05000454 2101 HMOWS ri,#0x01
F 000 Ox0500045C 0705 L3L3 ro,rl, #2858
0x0300043E FYFFFEE1 EBL.W RCC_APEl1PeriphClockCmd (0x08000
60 RCC_APEl1PeriphClockCmd (RCC_LPEZPeriph GPIOC, EMAELE=
e 9 e MwnEnnnaa? 21m1 MOnTS +1 #HMwnid @
000000000 | 3 B
R7 (0x00000000 == — =
Ra O=00000000 main.c - X
R3 000000000 051 | # Description ;P Main program. 5
R10 000000000 052 | + Taput e el
R11 (0x00000000 053 | * output .
R12 £-00000000 054 | * Return r None =
H13[] DH2DDDD438 055 b R R R R A R R R R R R
H‘Wﬁf&] : 0ot 056 dint main(void)
:) 057 4
- R i 058 A% Enable PWR and GPI0x Clocks *=/
Interhal 059 RCC_APE1PeriphClockCmd (RCC_APE1Periph PWR, ENAELE):
.I -) {gl=a] DT ADRAIDarAiwnk laclMwmA DT ADR?Davdiwnh DT TRTART T4 - i
- == Reqgisters 11] k

Mermory 1 v 3 X
' T g
Address: |0x20000000 El
OxzZ0000000: 00000000 00000000 00000000 00000000 00000000 O16ES600 00000000 OQOoO000o0o0
Oxz0000020: 04030201 09050706 40010500 40011000 40011000 00000000 00000000 QoO000o0o0
0xZ0000040: 00000000 OOO0Q0000 00000000 00000000 00000000 00000000 00000000 Qoo0oo000
Ox20000060: 00000000 Q0000000 00000000 00000000 00000000 Q0000000 00000000 Qooooooo
Oxz20000080: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 Q0000000
Oxz0000040: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 Q0000000
0xZ00000C0: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 Qoo00o000
O0x200000E0Q: 00000000 Q0000000 00000000 00000000 00000000 Qo0000000 00000000 Qoooooon Eﬂ

Gcall Stack | FlLocals | [watch 1

Memory 1 |;_[E5ymbols |

ST-Link Debugger

22/46

Doc ID 022896 Rev 1

UM1523

Using MDK-ARM Microcontroller Development Kit by Keil™

6.3

6.3.1

Note:

Creating your first application using the MDK-ARM toolchain

Managing source files

Follow these steps to manage source files.

1. Inthe Project menu, select New pVision Project... to display the Create Project File
dialog box. Name the new project and click Save.

Figure 26. Creating a new project

Project | Flash Debug Peripherals

Mew piision Project. .

Mew Multi-Project Workspace, ..

Open Projeck, .,

Export 3

Manage »

2. When a new project is saved, the IDE displays the Device selection dialog box. Select
the device used for testing. In this example, we use the STMicroelectronics device
mounted on the STM32FODISCOVERY board: double-click on STMicroelectronics,
select the STM32F051R8 device and click OK to save your settings.

Figure 27. Device selection dialog box

=T |

Wendor: STMicioslectonics
Device: STM32F105RE
Tookset ARM

Data bass Description:
€3 STMIZFI0ZR =
>l S TH32F105R8
L1 STM32F105RE o
B cheorine B4kB Embedded Flash

Core:
ARM 32-bit Corter-M3 Mi

3. Click Yes to copy the STM32 Startup Code to the project folder and add the file to the
project as shown in Figure 28.

Figure 28. Copy the STM32 Startup Code dialog box

HEIETO|

y ?]/’ Copy STM32 Startup Code to Project Folder and Add File to Project ?

(=] |

The default STM32 startup file includes the Systeminit function. You can either comment out
this file not to use it, or add the system_stm32fOxx.c file from the STM32f0xx firmware
library.

Doc ID 022896 Rev 1 23/46

Using MDK-ARM Microcontroller Development Kit by Keil™ UM1523

To create a new source file, in the File menu, select New to open an empty editor window
where you can enter your source code.

The MDK-ARM toolchain enables C color syntax highlighting when you save your file using
the File > Save As... dialog under a filename with the *.c extension. In this example
(Figure 29), the file is saved as main.c.

Figure 29. main.c example file

- D main.c

1

2

3 int wain (void)
4=

5 L return (0] ;
B =}

MDK-ARM offers several ways to add source files to a project. For example, you can select
the file group in the Project Window > Files page and right-click to open a contextual
menu. Select the Add Files... option, and browse to select the main.c file previously
created.

Figure 30. Adding source files

= ﬁ Target 1
SR

,ﬁ\ Options For Group 'Source Group 1, Alk+F7

] Rebuild all target Files

Build karget F?

add Group. ..
Add Files to Group "Source Group 1°...

Remaove Group 'Source Group 1' and its Files

ﬁ Manage Components. ..

+ | Show Include File Dependencies

If the file is added successfully, the following window is displayed.
Figure 31. New project file tree structure

Jrojeck

=23 Target 1
= ﬁ Source Group 1

+ main.l:
L [startup_strn32f 0w s

24/46 Doc ID 022896 Rev 1 [‘II

UM1523 Using MDK-ARM Microcontroller Development Kit by Keil™

6.3.2 Configuring project options
1. In the Project menu, select Options for Target 1 to display the Target Options dialog
box.
2. Open the Target tab and enter IROM1 and IARM1 Start and Size settings as shown in
Figure 32.
Figure 32. Target Options dialog box - Target tab
r_i_:_! Ui ore o, ;r'llé,':[..rle';':'fj' tﬂ!
i Device Taiget | Dulpd.l Listireg | Liser | Eu’l:wtl fsm | Linkei | Debusg | Lflfl::!
STMicioelechionies STHIZL152AB
= Cosde Gereralion
el (Mg} [BD
Diperating spstem: [Mone =] | [UseCooseModie Oplimzation
T Uee MigrallE> r
Ae=ad/Drly Memosy fiess Read/wiibe Memaly Sreas
| defauk off-<chip Skant Size Starhup dedauk off-chip Start Size Molnik
- RoM: | r r Ramn | E
T ROMZ | f r Ramz | | E:
r AOM [] r Ramz [| r
o —rehip : __ on-chip
(" (FioM1) ATB000000 [20000 e | (@ e {E00000 [Bao0— -
T TRoMe | I iRAMzZ | | |
|
|
ot | cmcel | Defmas | Help

3. Open the Debug tab, click Use and select the ST-Link Debugger. Then, click Settings
and select the SWD protocol. Click OK to save the ST-Link setup settings.

4. Select Run to main().

I‘YI Doc ID 022896 Rev 1 25/46

Using MDK-ARM Microcontroller Development Kit by Keil™

26/46

UM1523
Figure 33. Target Options dialog box - Debug tab
| Linker ebug)] Ltities | Linker Utiiies |
* Usze: |F|DI Interface Diriver ﬂ Settings | fe Use: |ST-Link Debugaer ﬂ‘ Settings !
ULIME, Cortex Debugger
RO Irterface Driver
W Load .gultt:”r:[izliacsgelr Cartex Debugoer I main(] I? .L.oac! App.lication at Startup un to rnainf)
Initializati mﬁ@iet Initialization File:
arte- - A-Trace J ST St ﬂ J 4
= ULIME, Pra Cortes Debugger
estore' s o Ty
Protocol
- ITAG
| Cancel

Open the Utilities tab, select Use Target Driver for Flash Programming and select
the ST-Link Debugger from the drop-down menu.

6. Verify that the Update Target before Debugging option is selected.
7. Click OK to save your settings.

Figure 34. Target Options dialog box - Utilities tab

l Ghitiogs fur Budae g L:;i
Device] Target] Dutput| Listing] Uger] C/C++ | Asm] Linker] Debug
Canfigure Flash Menu Command

Use Target Diriver for Flash Programming

LIME, Cortex Debugger ﬂ Settings | Update Target before Debugging
ULIME, Cortex Debugger

Irit File: | AD)| | ntertace Driver J Ed...
Stelaris ICDI

Systems JTAGet

" Use Exten !j:ll|num

-Trace

Command: = :

Arguments:

-

———]
Il Cancel | Defaults Help

In the Project menu, select Build Target.
If your project is successfully built, the following window is displayed.

Doc ID 022896 Rev 1 K‘YI

UM1523 Using MDK-ARM Microcontroller Development Kit by Keil™

Figure 35. MDK-ARM pVision4 project successfully built

Build Cukput

Euild target 'Target 1'

linking...

Program S3ize: Code=344 BEO-data~=405 RiW-data=0 ZI-data=l63Z2
YNEwProject.axf"™ - O Erroris), 0 Warninglsi—

10. Before running your application, establish the connection with the
STM32FODISCOVERY board as described in Section 1: Getting started.

11. To program the Flash memory and begin debugging, follow the instructions given in
Section 5.2: Debugging and running your EWARM project on page 12.

Doc ID 022896 Rev 1 27/46

Using Atollic TrueSTUDIO®

UM1523

7

7.1

28/46

Using Atollic TrueSTUDIO®

Building an existing TrueSTUDIO project

1. Open the TrueSTUDIO®/STM32 product folder and select the Atollic TrueSTUDIO®
STM32 product name. The program launches and asks for the Workspace location.

Figure 36. TrueSTUDIO workspace launcher dialog box

8 Workspace Launcher g‘

Select a workspace

Atollic TrueSTUDIOE For STMicroelectronics® STM32™ Lite stores your projects in a Folder called a workspace,
Choose a workspace Falder ko use For this session.

Workspace: | C\STM3ZF0_Discovery|FIRMWARE\ProjectiDemonstration! TrueSTUDIO |

» Copy Settings

0

2. Browse to select the STM32FODISCOVERY Demonstration TrueSTUDIO workspace
and click OK to save your settings and to display the Welcome screen. To start using
Atollic TrueSTUDIO®), click Start using TrueSTUDIO.

Figure 37. Atollic TrueSTUDIO®/STM32 Lite welcome screen

[0T - Al TrueSTUBOS/STMI] e ==its LN
N Fan lewrs Melacir Meagsie Sewch Mus Froiech Manesh Windew g

T Wik

Introduction

7 Product guarvies
Product documentation
= schnical suppor
m =i
e Enginesting services

Welcome to Product news

TrueSTUDIO"

Lite wersion

n Start using TresaSTUDIO

Click here to
continue

3. The TrueSTUDIO Discovery workspace contains a demo project for the
STM32FODISCOVERY kit. To load this project, select Import... in the File menu to
display the Import dialog box.

Doc ID 022896 Rev 1 I‘!I

UM1523 Using Atollic TrueSTUDIO®

4. In the Import window, open General, select Existing Projects into Workspace and
click Next.

Figure 38. Atollic TrueSTUDIO®/STM32 Lite import source select dialog box

8 Import IZHEWEI
Select

Create new projects from an archive file or direckory. I_E - 5 i

Select an impart source:

== General
@; &rchive Fils
rj Existing Projects into Workspace
[:L File System
L preferences
= Cfc++
[Run/Debug
= Team

©

I‘YI Doc ID 022896 Rev 1 29/46

Using Atollic TrueSTUDIO®

UM1523

5. Click Select root directory, browse to the TrueSTUDIO workspace folder and select

the STM32F0-Discovery project.

Figure 39. Atollic TrueSTUDIO®/STM32 Lite import projects dialog box

W import
Imnprinrt Projects

Salack & directory ko search for existing Eclipse projects.

() sebect archiva fis:

Projects:

3

[Icopy projects nto workspace
‘Working ssbs

[Add prajeck bo warking sets

(%) Select roct drectory: 20 tingray Discovery Eit\FTRMWA

[STMA2F0_Discovery Kit(CStingray Discovery | | Select Al

Erowse.

Desalect Al |

[refresn |

7 < Back | Einish

H Corcel |

6. Inthe Projects pane, select the STM32F0_Discovery_Kit and click Finish.

7. In the Project Explorer, select the STM32F0-Discovery project. Open the Project

menu, and click Build Project.

8. If your project is successfully compiled, the following window is displayed.

Figure 40. TrueSTUDIO® project successfully compiled

|_'a_'_ Problems | v Tasks & Console £2
'C-Build [STM324xG-EVAL_USBH-H5_F5]

= Properties |

STHI2FO-Discovery Demo.elf

{FilesYAtollich TeueSTUDIO for STMicroelectronics STM3IZ Lite 2.5.04T

Feport and converter tools only available in TrueITUDIO Profession

i(Build complete for project STM3ZFO0-Discovery Demcujl

[Tie consuwed: 24467 ms.

Doc ID 022896 Rev 1

UM1523

Using Atollic TrueSTUDIO®

7.2

Debugging and running your TrueSTUDIO project

In the Project Explorer, select the STM32F0-Discovery project and press F11 to display

the Debug Configuration dialog box.

Figure 41. TrueSTUDIO Debug Configuration dialog box

8 Import

Import Projects

Select a directory to search for existing Eclipse projects,

(®) Select rook directary: i_'.E'I,-STI‘~’I-32-FD__IZ?:|sc0Ver\;.-"l,FIF‘:r\'1'\-h-'.ﬂ'.-F‘J%'|,PE]e_ct'l,Dl_I

=3

=

-

| EBrowse. ..

() select archive file: l

Projects;

£

STM32F0-Discavery_Dema (C:\STM32F0_Discavery\FIRMWARE P Select al

|:| Copy projecks into workspace
Working sets

[]add project to working sets

Deselect Al

Finish

] l Cancel

Doc ID 022896 Rev 1

31/46

Using Atollic TrueSTUDIO® UM1523

7.3

32/46

9. Inthe Main tab, configure the project as shown in Figure 41 and click OK to save your
settings and to program the Flash memory and begin debugging.

Figure 42. TrueSTUDIO Debug window

a Debup - STMIZFD-D iscoveryllses fmain, ¢ - Atollic TrueS TUDKIES TMIZ Lie
Hls Edi Source Relsior hevigals Semch Bropet Buh Manuak Wisdaw Hep

5 B R - L B R RS SR SR B B SR R R B petwy |BLCiCe4+
% Dabug 22 : LA] e 3 3T T O tevar 31 O b W |l BE Mo s m|
= 5] STMITRY Desoovery oF [Enbedded CIC++ Appleation] ol D <

= -@‘Em.lemd TP+ Application (578511 4:29 FI) {Suspended] =

= Thread [L] {Suspended: Brodooint hit.)
= | pesn}mesn.c 61 t0B00212
W ST-LINE
o CAFrogram Flzsiibolicl Trus SO STMIZ Lke 2, 1 0ARMTookbsinlarm-stolbc-sabi-ach (91511 4
o CHNES PO Marts_Diboovery_KEFIRMUOARE Frajectifer phars_BxanplalSTM3aFE-Disoos

o = GPLO IneStrudure =4, .} A
(4 GPIO Fin=10
=)= GPED PModle = |57
(=) GPEO_Spetd = GPR0_Spesd] 25T
il (PR OTwne =GR NTvne FP

L3 *
(£] strazfe dorovery b €] shred2bos & ¢ [mainie ET =0 || 87 oxtine 2 Lo e 750
it ~ U gmizo dscoveryh
& = H elayluntae 1) : wad
g D f¥ Initialige LEDs mouanted on STHIZF-Drsoovery bosrd *7 LR unmgred lang
=) STH EVAL LEDTnit (LEDI}; & mandoid) : ik
? & 5T EVAL LERInit (LEDI); & Dl st wold
..gl %] 5T EVAL LEPInit (LEDS) : B asted Feledliad D b ek L) vod
é &4 5Tl EVAL LEDRTwnit (LED4:
g cc f* Tucn en LED1 and LED3 %/
B3 5Tl EVAL LEDOR (LEDL) ;
93 STM_EVAL LEROn (LEUS) :
B
N o f* This fubotion £1lla the ROC ClockFreq struoture with B
£ ¥
El Console 52 o Tasks |: Frabloms - 0 Exeosebles | [Femory . = W .-,”';-:F:E" A B-f-Ta

STHFF-Discoveey of [Embedded <+ Application] Cihﬁw‘r"lﬂa_Dbomur_ﬁimﬁnimeﬂuldjrmphﬂﬁméﬁmm’\TnnﬁTLﬂmTﬂﬁ
STHIE Successufully compleced peser opscation

Writable Smart Ineeet [

The debugger in the Atollic TrueSTUDIO can be used to debug source code at C and
assembly levels, set breakpoints, monitor individual variables and watch events during the
code execution.

To run your application, from the Run menu, select Resume, or alternatively click the
Resume button in the toolbar.

Creating your first application using TrueSTUDIO toolchain

TrueSTUDIO includes a dedicated connection to the STM32FODISCOVERY board. When
choosing this connection, all required files (startup file, firmware library, etc.) are added to
the workspace and sample files are generated in the project folder to simplify the
development. The debug settings are automatically configured by selecting
STM32FODISCOVERY as the evaluation board.

Follow these steps to create your first application using TrueSTUDIO toolchain.

1. Open the TrueSTUDIO®/STM32 product folder and select the Atollic TrueSTUDIO®
STM32 product name. The program launches and asks for the Workspace location.
Browse to select an existing workspace, or enter a new workspace location and click
OK to confirm.

Doc ID 022896 Rev 1 I‘!I

UM1523 Using Atollic TrueSTUDIO®

Figure 43. TrueSTUDIO workspace launcher dialog box

8 Workspace Launcher,

(X

Select a workspace

Akollic TrueSTUDIOEYSTM3Z Like stores your projects in a Folder called & workspace,
Choose a workspace Folder to use For this session,

Workspace: | o\ MewWWaorkspace| vl [Browse. ..

} Copy Settings

@:l I Ok l [Cancel]

2. When the Atollic TrueSTUDIO® displays its Welcome window, click Start using
TrueSTUDIO to open the main window. In the File menu, select New and click C
Project.

3. Name the new project, select STM32 C Project in the Project type pane, then click
Next.

Figure 44. TrueSTUDIO® C Project dialog box

a8 C Project |Z|®

C Project

—

Create C project of selected bype |

Project narne: | MeswProject

Use default location

Project bype: Toolchains:

[=F{Z= Executable [+ akallic ARM Toals
& Empty Project

= Makefile project

Show project types and toolchains only iF they are supported on the platform

\
@

I‘YI Doc ID 022896 Rev 1 33/46

Using Atollic TrueSTUDIO® UM1523

4. Inthe TrueSTUDIO® Build Settings dialog box, select STM32F0_Discovery as the
Evaluation board, configure the other settings as shown in Figure 45 and click Next.

Figure 45. TrueSTUDIO® Build Settings dialog box

8 C Project |:_|@@

TrueSTUDIO® Build Settings

Select hardware and build configuration

Targek
Yendor: : STMicroelectronics vj
Evaluation board: ;STMSEFD_Dischew w |

Microcontroller Family:

Microcontroller;

Floaking paink: : Software implementation vj

Code location: ilFL.ﬁ.SH W |

Instruction sekt

Endianess
Fig endian (2 Little endian

Opkimization
Remove unused code (dead code remonval)

Remove unused data (dead data removal)

@:‘ < Back][ek =][Einish][Cancel

Note: Choosing STM32FODISCOVERY as the evaluation board will configure the project as
follows:

® Microcontroller: STM32F051R8
® Debug probe: ST-LINK
® Connection: Serial Wire Debug (SWD).

34/46 Doc ID 022896 Rev 1 I‘!I

UM1523 Using Atollic TrueSTUDIO®

5. Verify that the JTAG Probe is ST-LINK and click Finish to confirm your settings.
Figure 46. TrueSTUDIO® Misc Settings dialog box

8 C Project |:|@@

TrueSTUDIO® Misc Settings

Select miscellaneous project settings

ITAG Probe:§| ST-LIMK - %

ST-LIME

Atollic TrueSTUDIO Lite only supparts one bype of 1TAG probe. Please
purchase the Professional wersion to get support For a large number of
other types of JTAG probes.

':‘?:' [< Back ” Mext =]ﬂ Finish I[Cancel]

6. Your project has been created successfully. Atollic TrueSTUDIO® generates target
specific sample files (main.c, stm32fOxx_it.c...) in the Project folder to simplify the
development. You can tailor this project to your needs by modifying these sampile files.

7. To build your project, click Build Project in the Project menu.
8. Your project is compiled successfully.

Figure 47. TrueSTUDIO® project successfully built

[f_F‘rDbIems ;’; Tasks | Bl console &2 £ Properties 4L ‘U’ if;,
Z-Build [Nei-\lF‘roject]

Ci:WProgram FileshAtollich TrueSTUDIO for 3ITMicroelectronics 3ITM3Z Lite
2.3.0hToolsharm—atollic-reports. jar sizeinfo MewProject.elf

Feport and converter tools only available in True3TUDIO Professional

(Build complete for project NewPrDject)

Time conswwed: 10125 ws.

9. Before running your application, establish the connection with the
STM32FODISCOVERY board as described in Section 1: Getting started. To program
the Flash memory and begin debugging, follow the instructions given in Section 7.2:
Debugging and running your TrueSTUDIO project on page 31.

IYI Doc ID 022896 Rev 1 35/46

Using TASKING UM1523

8 Using TASKING

8.1 Building an existing TASKING project

Follow these steps to build an existing TASKING project.

1. Open the TASKING VX-toolset for ARM Cortex IDE. The program launches and asks
for the Workspace location.

Figure 48. TASKING workspace launcher dialog box

@ Workspace Launcher

Select a workspace

TASKING Vi-toclset For 88M Corbex w4.0r] stores your projects in a folder caled & workspaoce.
Choose & workspace holder bo use For this session,

watkspece: C\Stingray_DiscoveryKit\Fimmare Demonstration TASEING

[[] Lise this 25 the default and da not ask again

l CH]1 Cancel |

2. Browse to select the STM32FODISCOVERY Demonstration TASKING workspace and
click OK to save your settings and to display the Welcome screen. To start using
TASKING, click Go to the workbench.

Figure 49. TASKING VX-Toolset for ARM Cortex welcome screen

H TASKING CiC++ - TRSKING VX-teoleet Tor ARM Coanex w3201
Fie Edt Hadgabe Seach Frolecd Fun Window Help
[wekonee 65 . Jir =&

=
Workbench
0 10 the workd-=rchi -

TASKING

4

36/46 Doc ID 022896 Rev 1

UM1523

Using TASKING

3. The TASKING Discovery workspace contains a demo project for the
STM32FODISCOVERY kit. To load this project, select Import... in the File menu to
display the Import dialog box.

4. In the Import window, open General, select Existing Projects into Workspace and
click Next.

Figure 50. TASKING import source select dialog box

- BX

Select

Create new projects from an archive file o directory, I_E - 5 I

Select an import source:

| |
== General
[T Archive File
Existing Projects inta Workspace
[:L File Syskem
L Preferences
= ClC++
= cvs
(= RunjDebug
[TASKING CfC++
(= Team

©

Doc ID 022896 Rev 1 37/46

Using TASKING

UM1523

38/46

5.

Click Select root directory, browse to the TASKING workspace folder and select the

STM32F0-Discovery project.

Figure 51. TASKING import projects dialog box

Import Projects

Select & directory bo seanch for existing Eclipse projects.

() Sedect archiva file:

Projects:

<€

[(Iicopy projects nto wiorkspace
‘Working ssts

[] s profect bo warking sste

7\ « Back

(%) Select roct drectory: GO0 tmgray Discovery EitWWIEMWA | mowse,

STMS2F0_Discovery Kit(C:Stingray Discawery " | 5okt 4l

I:-:gszela-:t P.H--

| Frish “ Concel |

6.
7.

In the Projects window, select the STM32F0_Discovery_Kit and click Finish.

In the Project Explorer, select the STM32F0-Discovery project. Open the Project

menu, and click Build Project.

Doc ID 022896 Rev 1

UM1523

Using TASKING

8. If your project is compiled successfully, the following window is displayed.

Figure 52. TASKING project successfully compiled

W Import

Import Projects
Seleck & directory bo seanch for existing Eclipse projects.

() Sedect: archiva fie:

Projects:

L1

[Iicapy projects into wiorkspace
‘Wiorking stz
[add project bo warking sets

STMIZF]_Discovery FKit(C\Stingray Discovery_

(%) Select roct drectory: C\8tinzray Discowery Kt FTEM WA

Sedeck Al

Enish

Concel |

Doc ID 022896 Rev 1

39/46

Using TASKING UM1523

8.2 Debugging and running your TASKING project

Figure 53 shows the first step for debugging and running your TASKING project. From the
project toolbar menu, select Debug > Debug STM32F0-Discovery_Demo.

Figure 53. TASKING debug window

@ TASKING Debug - STMIZF ¢ Discovery DemofUser/main.c - TASKING VX -toalset for ARM Corte... [o |5
Fiie Edit Source Refactor Navigate Search Froject Debug Window Heip
[HYRREE - IR - T L TR T [| % TASEING Debug
H- % - = TaskIna oje. ..
W Debug 1 =0t vartakin Sgmreakpo| T O | I TASKING Ragisters o
; ot 1| 0 3 :
H :
F i = Hame Malue Group: |Core ~
= H (= ROC_Oocks { S¥SCLK_ '
- I~ A £ ¥
= &5 STHSEF() Dscovery Dema [TASHA R0 00 ic
=- @ TATING Dubugger (31511 R el
= o Theead[1:LARM] (Susp | & ¥ Pz CADOEIR0
= 2 maind) main, .70 0 zk] OxBO0S 1=
{8 W AP UMY P4 0
4 » i -
0 meinc 5 = 00| G TASKING Disassembily £ 5% Outlne =0
£ > Aodress: | CeDBO02ETE
& congole 22 & Tasks = 0| @ memcry 3 =
Debug [STMIF™-Discovary Deme] (o PR et Bl - Y - b o EE|
Copyright ZO006-2011 Altium BV allMe &
. o o
{ARM debug instrusment i= running in tcis
Losding application "Ci\Docsument= and 2
-
L3 »

The debugger in TASKING can be used to debug source code at C and assembly levels, set
breakpoints, monitor individual variables and watch events during the code execution.

To run your application, from the Run menu, select Resume, or alternatively click the
Resume button in the toolbar.

40/46 Doc ID 022896 Rev 1 K‘!I

UM1523 Using TASKING

8.3 Creating your first application using TASKING toolchain

The debug session is launched as follows:

1. Open TASKING VX-Toolset for ARM Cortex. The program launches and asks for the
Workspace location. Browse to select an existing workspace, or enter a new
workspace location and click OK to confirm.

Figure 54. TASKING Workspace Launcher dialog box

W Workspace Launcher,

X]

Select a workspace

TASKIMNG Y¥-toolset For ARM Cortex w3.2r1 stores vour projects in a Folder called a workspace.
Choose a workspace folder to use For this session,

‘Workspace: |c:NewWorkspace vl [Browse...

[Juse this as the default and da not ask again

I QK] [Cancel]

2. When TASKING displays its Welcome window, click Go to workbench to open the

main window. In the File menu, select New > TASKING VX-toolset for ARM C/C++
Project.

3. Inthe New C/C++ Project dialog box, enter the new Project name; then, in the
Project type box, select TASKING ARM Application and click Next.

Figure 55. TASKING New C/C++ Project dialog box

B MNew CAC+ + Project

C/C+ + Project
Create a rew O C4 4+ project for the TASKING Yi-toolset For ARM |

—

,:—'_'_'_'—
(Project name: | NewProject]
_____'_'__,_-—F'-

Lse default location

Frojack bype:
=TT TASKING ARM Applicabion —.
__i_E_mpty' (T T S
& Hela Warld C Praject
& Helo world C++ Project
+00 TASKING ARM Library
=T TASKING ARM MIL Libeary

@ : [mest>][Fish |[canca |

Doc ID 022896 Rev 1 41/46

Using TASKING UM1523

42/46

4. From the list of supported devices, select STMicroelectronics > STM32F051 >

STM32F0518R8 as shown below in Figure 56.
Figure 56. Processor selection

Frocessor selecticn

€15 7] Tk £

LRI = b
[ERME =g b

Clapza il

+ [] aTMEFIDS
ST ar

£ STMEELLS]
@ []smarLise
1= [sTMEFeIs
1 [simaraay
® || sTMIFaIs
@[] sTMEsFT

& [STMRF0S

5. To configure the project for Manta DISCOVERY board, select Debug > Debug
configurations and choose STMicroelectronics STM32F0 Stingray Discovery Kit.
Choosing STMicroelectronics STM32F0 Stingray Discovery Kit as the evaluation
board, will add automatically the needed linker file and will configure the project as
follows:

— Microcontroller: STM32F051R8
— Debug probe: ST-LINK
— Connection: Serial Wire Debugging (SWD).

Figure 57. Debug configuration

Project IEM Window Help

e . Diebug STM32FD Discovery_Demo

Doc ID 022896 Rev 1 I‘!I

UM1523 Using TASKING

6. To add source file to your project, right-click on the project from the C/C++ project
window and select Import.

7. From the Import dialog box, select General and the desired file as shown in Figure 58:
TASKING Import dialog box.

Figure 58. TASKING Import dialog box

& Import

Select :
Create rew projects from an archive file or directory. | _E - E

Select an impart source:

B General
2 Archive Fie
[“Existing Projects into workspace
LT Systen_—>
L, Preferences
= l'.-lI'C++
k= O¥5
= RJ.II'I.l‘DE‘b"JI]
L= TASKING CjC++
L=r Team

BEEEEE

=

I‘YI Doc ID 022896 Rev 1 43/46

Using TASKING UM1523

44/46

8. Click Next. Fill the displayed window as following and then browse to your source file.
Figure 59. Adding a new source file window.

From directary: | C:l W |

(@O ey | ~|
E (E B -
b
Filker Types...] [Select all] [Deselect all
Into folder; | Project]
Options

|:| Crverwrite existing resources without warning

[]create top-level folder

<[¥] Create links in workspace

Create virtual folders
Create link locations relative to: ;PROJECT_LOC v

P

9. Select main.c file and click Finish.

10. To build your project, click on Project > Build Project from the toolbar menu.
11. Your project is compiled successfully.

Figure 60. Tasking project successfully built

I__"'_ Problems 5 El console = Properties
33 items

Descripkion Resource Path

Z/C++ build completed successtully Hewpr‘:'j_e‘i____::?

12. Before running your application, establish the connection with the
STM32FO0DISCOVERY board as described in Section 1: Getting started.

Doc ID 022896 Rev 1 [‘II

UM1523

Revision history

9

Revision history

Table 2. Document revision history
Date Revision Changes
23-Mar-2012 1 Initial release.

Doc ID 022896 Rev 1

45/46

UM1523

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

46/46 Doc ID 022896 Rev 1 KYI

	Table 1. Applicable products and tools
	1 Getting started
	1.1 System requirements
	Figure 1. Hardware environment

	1.2 Running the built-in demonstration

	2 Description of the firmware package
	Figure 2. Hardware environment
	2.1 Libraries folder
	2.1.1 CMSIS subfolder
	2.1.2 STM32F0xx_StdPeriph_Driver subfolder

	2.2 Project folder
	2.2.1 Demonstration subfolder
	2.2.2 Master_Workspace subfolder
	2.2.3 Peripheral_Examples subfolder

	2.3 Utilities folder

	3 Binary images for reprogramming firmware applications
	4 ST-LINK/V2 installation and development
	5 Using IAR Embedded Workbench® for ARM
	5.1 Building an existing EWARM project
	Figure 3. IAR Embedded Workbench IDE (Integrated Design Environment)
	Figure 4. EWARM project successfully compiled

	5.2 Debugging and running your EWARM project
	Figure 5. Download and Debug button
	Figure 6. IAR Embedded Workbench debugger screen
	Figure 7. Go button

	5.3 Creating your first application using the EWARM toolchain
	5.3.1 Managing source files
	Figure 8. Create New Project dialog box
	Figure 9. IDE interface
	Figure 10. main.c example file
	Figure 11. Adding files to a project
	Figure 12. New project file tree structure

	5.3.2 Configuring project options
	Figure 13. Configuring project options
	Figure 14. General options > Target tab
	Figure 15. Linker > Config tab
	Figure 16. Linker configuration file editor dialog box > Vector Table tab
	Figure 17. Linker configuration file editor dialog box > Memory Regions tab
	Figure 18. C/C++ Compiler > Preprocessor tab
	Figure 19. Debugger > Setup tab
	Figure 20. Select Flash loaders
	Figure 21. ST-Link communication protocol

	6 Using MDK-ARM Microcontroller Development Kit by Keil™
	6.1 Building an existing MDK-ARM project
	Figure 22. MDK-ARM µVision4 IDE environment
	Figure 23. Build Output - MDK-ARM µVision4 project successfully compiled

	6.2 Debugging and running your MDK-ARM project
	Figure 24. Starting an MDK-ARM µVision4 debugging session
	Figure 25. MDK-ARM IDE workspace

	6.3 Creating your first application using the MDK-ARM toolchain
	6.3.1 Managing source files
	Figure 26. Creating a new project
	Figure 27. Device selection dialog box
	Figure 28. Copy the STM32 Startup Code dialog box
	Figure 29. main.c example file
	Figure 30. Adding source files
	Figure 31. New project file tree structure

	6.3.2 Configuring project options
	Figure 32. Target Options dialog box - Target tab
	Figure 33. Target Options dialog box - Debug tab
	Figure 34. Target Options dialog box - Utilities tab
	Figure 35. MDK-ARM µVision4 project successfully built

	7 Using Atollic TrueSTUDIO®
	7.1 Building an existing TrueSTUDIO project
	Figure 36. TrueSTUDIO workspace launcher dialog box
	Figure 37. Atollic TrueSTUDIO®/STM32 Lite welcome screen
	Figure 38. Atollic TrueSTUDIO®/STM32 Lite import source select dialog box
	Figure 39. Atollic TrueSTUDIO®/STM32 Lite import projects dialog box
	Figure 40. TrueSTUDIO® project successfully compiled

	7.2 Debugging and running your TrueSTUDIO project
	Figure 41. TrueSTUDIO Debug Configuration dialog box
	Figure 42. TrueSTUDIO Debug window

	7.3 Creating your first application using TrueSTUDIO toolchain
	Figure 43. TrueSTUDIO workspace launcher dialog box
	Figure 44. TrueSTUDIO® C Project dialog box
	Figure 45. TrueSTUDIO® Build Settings dialog box
	Figure 46. TrueSTUDIO® Misc Settings dialog box
	Figure 47. TrueSTUDIO® project successfully built

	8 Using TASKING
	8.1 Building an existing TASKING project
	Figure 48. TASKING workspace launcher dialog box
	Figure 49. TASKING VX-Toolset for ARM Cortex welcome screen
	Figure 50. TASKING import source select dialog box
	Figure 51. TASKING import projects dialog box
	Figure 52. TASKING project successfully compiled

	8.2 Debugging and running your TASKING project
	Figure 53. TASKING debug window

	8.3 Creating your first application using TASKING toolchain
	Figure 54. TASKING Workspace Launcher dialog box
	Figure 55. TASKING New C/C++ Project dialog box
	Figure 56. Processor selection
	Figure 57. Debug configuration
	Figure 58. TASKING Import dialog box
	Figure 59. Adding a new source file window.
	Figure 60. Tasking project successfully built

	9 Revision history
	Table 2. Document revision history

