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Introduction

This document describes the software, firmware environment and development
recommendations required to build an application around the STM32FODISCOVERY board.

It presents the firmware applications package provided within this board with details on its
architecture and contents. It provides guidelines to novice users on how to build and run a
sample application and allows them to create and build their own application.

This document is structured as follows:

m System requirements to use this board and how to run the built-in demonstration are
provided in Section 1: Getting started.

m Section 2 describes the firmware applications package.

m Section 4 presents development toolchain installation and overview of ST-LINK/V2
interface.

m Section 5, Section 6, Section 7, and Section 8introduce how to use the following software
development toolchains:

IAR Embedded Workbench® for ARM (EWARM) by IAR Systems

Microcontroller Development Kit for ARM (MDK-ARM) by Keil™

TrueSTUDIO® by Atollic

TASKING VX-toolset for ARM Cortex by Altium

Although this user manual cannot cover all the topics relevant to software development
environments, it demonstrates the first basic steps necessary to get started with the
compilers/debuggers.

Table 1 lists the microcontrollers and development tools concerned by this application note.

Table 1. Applicable products and tools

Type Applicable products
Microcontrollers STM32 FO series Entry-level Cortex™-MO microcontrollers
Development tools STM32F0DISCOVERY evaluation board and discovery kit

Reference documents

m STM32FODISCOVERY high-performance discovery board data brief
m STM32FODISCOVERY peripherals firmware examples (AN4062)

m STM32FO0xx reference manual (RM0091)
m STM32F051x4 STM32F051x6 STM32F051x8 datasheet

The above documents are available at www.st.com/stm32f0-discovery.
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Getting started

System requirements

Before running your application, you should establish the connection with the
STM32FODISCOVERY board as following.

Figure 1. Hardware environment

To run and develop any firmware applications on your STM32FO0DISCOVERY board, the
minimum requirements are as follows:

® Windows PC (2000, XP, Vista, 7)

e 'USB type A to Mini-B' cable, used to power the board (through USB connector CN1)
from host PC and connect to the embedded ST-LINK/V2 for debugging and
programming.

Running the built-in demonstration

The board comes with the demonstration firmware preloaded in the Flash memory. Follow
the steps below to run it:

® Check the jumper position on the board, JP2 on, CN2 on (Discovery selected).

® Connect the STM32F0-DISCOVERY board to a PC with a 'USB type A to Mini-B' cable
through USB connector CN1 to power the board. Then red LEDs LED1 (PWR) and
LED2 (COM) light up and green LED3 blinks.

® Press user button B1 (Button left corner of the board). The blinking of green LED3
changes according to clicks on user button B1.

® Each click on the USER push-button is confirmed by blue LEDA4.
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2.1

2.1.1

Description of the firmware package

The STM32FODISCOVERY firmware applications are provided in one single package and
supplied in one single zip file. The extraction of the zip file generates one folder,
STM32F0-Discovery_FW_VX.Y.Z, which contains the following subfolders:

Figure 2. Hardware environment

STMIZFO0-Discovery W _Ya.¥.2
+ ) _htmresc
=l ) Libraries
R
=l | ) STM32F0xx_StdPeriph_Driver
I inc
I src
= [} Project
+ | ) Demonstration
+ ) Master _\Waorkspace
+ | ) Peripheral_Examples
=1 [ Utilitias
+ ) STMI2F0-Disconvery

1. VX.Y.Z refer to the package version, ex. V1.0.0

Libraries folder
This folder contains the Hardware Abstraction Layer (HAL) for STM32F0xx devices.

CMSIS subfolder
This subfolder contains the STM32F0xx and Cortex-M0 CMSIS files.

Cortex-M0 CMSIS files consist of:

® Core Peripheral Access Layer: contains name definitions, address definitions and
helper functions to access Cortex-MO core registers and peripherals. It defines also a
device independent interface for RTOS Kernels that includes debug channel definitions.

STM32F0xx CMSIS files consist of:

® stm32fOxx.h: contains the definitions of all peripheral registers, bits, and memory
mapping for STM32F0xx devices. The file is the unique include file used in the
application programmer C source code, usually in main.c.

® system_stm32f0Oxx.c/.h: contains the system clock configuration for STM32F0xx
devices. It exports SystemInit () function which sets up the system clock source,
PLL multiplier and divider factors, AHB/APBXx prescalers and Flash settings. This
function is called at startup just after reset and before connecting to the main program.
The call is made inside the startup_stm32fOxx.s file.

® startup_stm32f0Oxx.s: provides the Cortex-MO startup code and interrupt vectors for all
STM32F0xx device interrupt handlers.
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STM32F0xx_StdPeriph_Driver subfolder

This subfolder contains sources of STM32F0xx peripheral drivers.

Each driver consists of a set of routines and data structures covering all peripheral
functionalities. The development of each driver is driven by a common API (application
programming interface) which standardizes the driver structure, the functions and the
parameter names.

Each peripheral has a source code file, stm32f0xx_ppp.c, and a header file,
stm32f0xx_ppp.h. The stm32f0xx_ppp.c file contains all the firmware functions required to
use the PPP peripheral.

Project folder
This folder contains the source files of the STM32FODISCOVERY firmware applications.

Demonstration subfolder

This subfolder contains the demonstration source files with preconfigured project for
EWARM, MDK-ARM, TrueSTUDIO and TASKING toolchains.

A binary image (*.hex) of this demonstration is provided under Binary subfolder. You can use
any in-system programming tool to reprogram the demonstration using this binary image.

Master_Workspace subfolder

This subfolder contains, for some toolchains, a multi-project workspace allowing you to
manage all the available projects (provided under the subfolders listed below) from a single
workspace window.

Peripheral_Examples subfolder

This subfolder contains a set of examples for some peripherals with preconfigured projects
for EWARM, MDK-ARM, TrueSTUDIO and TASKING toolchains. See Section 4 and
STM32FODISCOVERY peripheral firmware examples, AN4062, for further details.

Utilities folder

This folder contains the abstraction layer for the STM32FODISCOVERY hardware. It
provides the following drivers:

® stm32f0_discovery.c: provides functions to manage the user push-button and 2 LEDs
(LED3 and LED4).
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3 Binary images for reprogramming firmware
applications

This section describes how to use the provided binary images to reprogram the firmware
applications. The STM32FODISCOVERY firmware package contains binary images (*.hex)
of the provided applications under Binary subfolder. You can use any in-system
programming tool to reprogram the demonstration using this binary image.

to reprogram the firmware applications, use the “in-system programming tool” and:

1. Connect the STM32FODISCOVERY board to a PC with a 'USB type A to Mini-B' cable
through USB connector CN1 to power the board.

2. Make sure that the embedded ST-LINK/V2 is configured for in-system programming
(both CN3 jumpers ON).

3. Use *.hex binary (for example,
\Project\Demonstration\Binary\STM32F0-Discovery_Demonstration_V1.0.0.hex) with
your preferred in-system programming tool to reprogram the demonstration firmware
(ex. STM32 ST-LINK Utility, available for download from www.st.com).

IYI Doc ID 022896 Rev 1 9/46
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ST-LINK/V2 installation and development

STM32FODISCOVERY board includes an ST-LINK/V2 embedded debug tool interface that
is supported by the following software toolchains:

IAR™ Embedded Workbench for ARM (EWARM) available from www.iar.com
The toolchain is installed by default in the C:\Program Files\|IAR Systems\Embedded
Workbench 6.30 directory on the PC’s local hard disk.

After installing EWARM, install the ST-LINK/V2 driver by running the
ST-Link_V2_USB.exe from [IAR_INSTALL_DIRECTORY]\Embedded Workbench
6.30\arm\drivers\ST-Link \ST-Link_V2_USBdriver.exe

RealView Microcontroller Development Kit (MDK-ARM) toolchain available from
www.keil.com

The toolchain is installed by default in the C:\Keil directory on the PC’s local hard disk;
the installer creates a start menu pVision4 shortcut.

When connecting the ST-LINK/V2 tool, the PC detects new hardware and asks to install
the ST-LINK_V2_USB driver. The “Found New Hardware wizard” appears and guides
you through the steps needed to install the driver from the recommended location.
Atollic TrueSTUDIO® STM32 available from www.atollic.com

The toolchain is installed by default in the C:\Program Files\Atollic directory on the PC’s
local hard disk.

The ST-Link_V2_USB.exe is installed automatically when installing the software
toolchain.

Altium™ TASKING VX-toolset for ARM® Cortex-M available from www.tasking.com
The toolchain is installed by default in the “C:\Program Files\TASKING directory on the

PC’s local hard disk. The ST-Link_V2_USB.exe is installed automatically when
installing the software toolchain.

The embedded ST-LINK/V2 supports only SWD interface for STM32 devices.

Refer to the firmware package release notes for the version of the supporting development
toolchains.
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5 Using IAR Embedded Workbench® for ARM

5.1 Building an existing EWARM project

The following is the procedure for building an existing EWARM project.
1. Open the IAR Embedded Workbench® for ARM (EWARM).

Figure 3 shows the basic names of the windows referred to in this document.
Figure 3. IAR Embedded Workbench IDE (Integrated Design Environment)

D& L |

Files Window
[

Workspace Window
[+

Messages

Build Window

|

IReadv

2. Inthe File menu, select Open and click Workspace to display the Open Workspace
dialog box. Browse to select the demonstration workspace file and click Open to launch
it in the Project window.

3. Inthe Project menu, select Rebuild All to compile your project.
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4. If your project is successfully compiled, the following window in Figure 4 is displayed.
Figure 4. EWARM project successfully compiled

x

hMessages File 25

Errars: none
YWarnings: none

Link tirne: 0.05 (CPU) 0.03
(elapsed)

Total number of errors: 0
= Taotal number of warnings: 0
= W

Ready

Debugging and running your EWARM project

In the IAR Embedded Workbench IDE, from the Project menu, select Download and
Debug or, alternatively, click the Download and Debug button the in toolbar, to program the
Flash memory and begin debugging.

Figure 5. Download and Debug button

T A
e
T X

ﬁDownload and Debug

The debugger in the IAR Embedded Workbench can be used to debug source code at C
and assembly levels, set breakpoints, monitor individual variables and watch events during
the code execution.
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Figure 6. IAR Embedded Workbench debugger screen
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A% Select HSI a3 system clock sowrce */ 0x80002e0; Da210)
RCC SFSCIECanFin (ROT SVSCIESmres HSTY - o 0x80002e2: 0x2001%
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Goto (008100000 v [ Memay v = |
08000000 20000428 08000821 08000909 0800090 -~
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To run your application, from the Debug menu, select Go. Alternatively, click the Go button
in the toolbar to run your application.

Figure 7. Go button
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Creating your first application using the EWARM toolchain
Managing source files

Follow these steps to manage source files.
1. In the Project menu, select Create New Project and click OK to save your settings.
Figure 8. Create New Project dialog box

Create New Project E|

Toal chain: |AF!M “ |

Project templates:

Emply project
asm
C++
C
DLE
Erternally built executable

Description:

Creates an empty project.

OF. l ’ Cancel ]

2. Name the project (for example, NewProject.ewp) and click Save to display the IDE
interface.

Figure 9. IDE interface

#% IAR Embedded Workbench DE (= |[B[X]

File Edit ‘iew Project  Simulator  Tools  Window
Help

D@
pacs

[ebug

Files e
INewProje... +

HewProject

|

Messages
Configquration is up-to-date.

(=0 |

[~
|~
x| <

To create a new source file, in the File menu, open New and select File to open an empty
editor window where you can enter your source code.
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The IAR Embedded Workbench enables C color syntax highlighting when you save your file
using the dialog File > Save As... under a filename with the *.c extension. In Figure 10:
main.c example file, the file is saved as main.c.

Figure 10. main.c example file

(man.c [ i
int main{wroid) f
i
return(0);
1
-
O >

Once you have created your source file, you can add this file to your project by opening the

Project menu, selecting Add and adding the selected file as in Figure 11: Adding files to a
project.

Figure 11. Adding files to a project

% 1AR Embedded Workbench IDE =3
File Edit Wiew Project Simulator  Tools  Window  Help
=== :
‘Warkspace I | v
|Debug "| int main (vodid) f
Files el =t o
—_ return
BE Options...
Take }
Rebuild all
Clean
pies..
N add "main.c”
EMOE add Group...
I_ v
MEWRI Source Code Control b [Fof(C] € b4
Addthe sl Fie properties...

If the file is added successfully, Figure 12: New project file tree structure is displayed.
Figure 12. New project file tree structure

Files fn| B
Efslnewproj- | v | |
main.c *
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Configuring project options

Follow these steps to configure project options.

1.

Figure 13. Configuring project options

In the Project Editor, right-click on the project name and select Options... to display the
Options dialog box as in Figure 13.

Files

newproi-_

Take

Rebuild Al
Clean

2.

Figure 14. General options > Target tab

In the Options dialog box, select the General Options category, open the Target tab
and select Device - ST -STM32F0xx.

Options for, node “STM32F0-Discovery_Demo™

Category:

General Options
CIC++ Compiler
Assembler
Output Corvverter
Custom Build
Build Actions
Lirker
Debugger

Simulatar

Angel

GDE Server

IAR. ROM-monitar
J-Linkf3-Trace
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Macraigor

PE micro

RDI

IThGjet

ST-LIMNK
Third-Party Driver
TI ¥D3100

Target | Output | Library Configuration | Library Options | MISR&-C;200 4 #

Processor variant

(O Core

& Device | 3T STM32F 050

Endian mode

(@) Little
O Big

Actel

0K

MNone

AnalogDevices
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Cirrus
EnergyMicro
Epson
Faraday
Freescals
Fuiitsu
Hilscher
Holtek

Intel

Marvell
Micronas
MetSilicon
MHuvaton

HXP

[0/ 4}
OMSemiconduckor
Samsung
Socle

TexasInstruments
Toshiba

4
4
»
»
»
4
4
4
4
»
»
»
3
3
4
»
»
»
»
3
4
3

L3
L3

3T SPEAr300
3T SPEAr310
3T SPEAr3Z0
3T SPEArG0N

ST STME2F100x4
ST STM3ZF100x8
3T 3TM32F100x5
3T STMIZF100xE
3T STMIZF100xC
ST STMIZF100xD
ST STMEZF100E
ST STME2F105x8
3T 3TM32F105:E
3T STM32F105xC
3T STMIZF107xE
3T STMIZF107xC
ST STMEZF 10t
ST STME2F10xx6
3T STM3ZF10xxE
3T STM3ZF10:xxE
3T STMIZF 100
3T STMIZF 100D
ST STMEZF10xxE
ST STMEZF10F
3T STM3EF10xxG
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3T STMIZF205vx
3T STM3ZF2052x
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aT STM32F215rx
aT STME2F2152x
ST STM3EFZ17xx
AT STM32Fdunx
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-
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3. Select the Linker category and open the Config tab; in the Linker configuration file

pane, select Override default and click Edit to display the Linker configuration file
editor.

Figure 15. Linker > Config tab

Assembler

Qukput Correerter Library Input || Output || List ftdefine | Diagnostics
Custom Build

Eiuild ki

Linker configuration file

[] Overide default

Debugger
Sirmulator

4.

In the Linker configuration file editor dialog box, open the Vector Table tab and set
the .intvec.start variable to 0x08000000.

Figure 16. Linker configuration file editor dialog box > Vector Table tab

Linker configuration file editor

Vector Table ) Memary Regions || Stack{Heap Sizes

.intvec start | 0x0S000000

I Save H Cancel ]

5. Open the Memory Regions tab, and enter the variables as shown in Figure 17.

Figure 17. Linker configuration file editor dialog box > Memory Regions tab

Linker configuration file editor ﬁ|

Vactor Table | Memary Regions | StackfHeap Sizes

Stark End:
OxDS0FFAFF

i 0G000000

RAM Q200000 D= 20020000

l Save ] Cancel |

6. Click Save to save the linker settings automatically in the Project directory.
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If your source files include header files, select the C/C++ Compiler category, open the
Preprocessor tab, and specify their paths as shown in Figure 18. The path of the
include directory is a relative path, and always starts with the project directory location
referenced by $PROJ DIR$

Figure 18. C/C++ Compiler > Preprocessor tab

CJC++ Compiler
Azzembler
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8.

To set up the ST-Link embedded debug tool interface, select the Debugger category,
open the Setup tab and, from the drop-down Driver menu, select ST-Link as shown in
Figure 19.

Figure 19. Debugger > Setup tab
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9.

Open the Debugger tab and select Use flash loader(s) as shown in Figure 20.

Figure 20. Select Flash loaders
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10. Select the ST-Link category, open the ST-Link tab and select SWD as the connection
protocol as shown in Figure 21.

Figure 21. ST-Link communication protocol
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11. Click OK to save the project settings.

12. To build your project, follow the instructions given in Section 5.1: Building an existing
EWARM project on page 11.

13. Before running your application, establish the connection with the
STM32FO0DISCOVERY board as described in Section 1: Getting started.

14. To program the Flash memory and begin debugging, follow the instructions given in
Section 5.2: Debugging and running your EWARM project on page 12.

Interface
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6 Using MDK-ARM Microcontroller Development Kit by

Keil™

6.1 Building an existing MDK-ARM project
Follow these steps to build an existing MDK-ARM project.

1. Open the MDK-ARM pVision4 IDE, debugger, and simulation environment.
Figure 22: MDK-ARM uVision4 IDE environment shows the basic names of the

windows referred to in this section.

Figure 22. MDK-ARM pVision4 IDE environment
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2. Inthe Project menu, select Open Project... to display the Select Project File dialog
box. Browse to select the STM32F0-Discovery.uvproj project file and click Open to

launch it in the Project window.

3. Inthe Project menu, select Rebuild all target files to compile your project.

20/46 Doc ID 022896 Rev 1

4




UM1523

Using MDK-ARM Microcontroller Development Kit by Keil™

6.2

4. If your project is successfully compiled, the following Build Output window (Figure 23:

Build Output - MDK-ARM pVision4 project successfully compiled) is displayed.
Figure 23. Build Output - MDK-ARM pVision4 project successfully compiled

Build Dutput =
compiling stm3Zf0_discovery.c... =

compiling Stm3Zf0xx_syscfg.c...
compiling Stm3Zf0xx_misc.c...
compiling Stm3Zf0xx_ade.c. ..
compiling Stm3Zf0xx_dac.c...
compiling stm32£0xx_dma.c. ..
compiling Stm3ZE0xx_exti.c...
compiling stm3Zf0xx_flash.c...
compiling Stm3Zf0xx_gpio.c...
compiling Stm3Zf0xx_iZe.o...
compiling Stm3ZE0xx_reoc.c...
compiling Stm3Zf0xx_spi.c...
compiling Stm3ZE0xx_tim.c...
assernbling startup stm3ZE0xx.sS...

linking. ..
Program Size: Code=2000 RO-data=252 RW-data=36 ZI-data=1028
"4 STH32F0-Discovery DemolSTM32FO-Discovery Demo.axf” - O Error(s), O Warning(s).

Debugging and running your MDK-ARM project

In the MDK-ARM pVision4 IDE, click the magnifying glass to program the Flash memory

and begin debugging as shown below in Figure 24.

Figure 24. Starting an MDK-ARM pVision4 debugging session
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The debugger in the MDK-ARM IDE can be used to debug source code at C and assembly
levels, set breakpoints, monitor individual variables and watch events during the code

execution as shown below in Figure 25.
Figure 25. MDK-ARM IDE workspace
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6.3

6.3.1

Note:

Creating your first application using the MDK-ARM toolchain

Managing source files

Follow these steps to manage source files.

1. Inthe Project menu, select New pVision Project... to display the Create Project File
dialog box. Name the new project and click Save.

Figure 26. Creating a new project

Project | Flash  Debug  Peripherals

Mew piision Project. .

Mew Multi-Project Workspace, ..

Open Projeck, .,

Export 3

Manage »

2.  When a new project is saved, the IDE displays the Device selection dialog box. Select
the device used for testing. In this example, we use the STMicroelectronics device
mounted on the STM32FODISCOVERY board: double-click on STMicroelectronics,
select the STM32F051R8 device and click OK to save your settings.

Figure 27. Device selection dialog box
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3. Click Yes to copy the STM32 Startup Code to the project folder and add the file to the
project as shown in Figure 28.

Figure 28. Copy the STM32 Startup Code dialog box

HEIETO|

y ?]/’ Copy STM32 Startup Code to Project Folder and Add File to Project ?
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The default STM32 startup file includes the Systeminit function. You can either comment out
this file not to use it, or add the system_stm32fOxx.c file from the STM32f0xx firmware
library.
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To create a new source file, in the File menu, select New to open an empty editor window
where you can enter your source code.

The MDK-ARM toolchain enables C color syntax highlighting when you save your file using
the File > Save As... dialog under a filename with the *.c extension. In this example
(Figure 29), the file is saved as main.c.

Figure 29. main.c example file

- D main.c

1

2

3 int wain (void)
4=

5 L return (0] ;
B =}

MDK-ARM offers several ways to add source files to a project. For example, you can select
the file group in the Project Window > Files page and right-click to open a contextual
menu. Select the Add Files... option, and browse to select the main.c file previously
created.

Figure 30. Adding source files
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If the file is added successfully, the following window is displayed.
Figure 31. New project file tree structure
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6.3.2 Configuring project options
1. In the Project menu, select Options for Target 1 to display the Target Options dialog
box.
2.  Open the Target tab and enter IROM1 and IARM1 Start and Size settings as shown in
Figure 32.
Figure 32. Target Options dialog box - Target tab
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3. Open the Debug tab, click Use and select the ST-Link Debugger. Then, click Settings
and select the SWD protocol. Click OK to save the ST-Link setup settings.

4. Select Run to main().
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Figure 33. Target Options dialog box - Debug tab
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Open the Utilities tab, select Use Target Driver for Flash Programming and select
the ST-Link Debugger from the drop-down menu.

6. Verify that the Update Target before Debugging option is selected.
7. Click OK to save your settings.

Figure 34. Target Options dialog box - Utilities tab
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In the Project menu, select Build Target.
If your project is successfully built, the following window is displayed.
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Figure 35. MDK-ARM pVision4 project successfully built
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10. Before running your application, establish the connection with the
STM32FODISCOVERY board as described in Section 1: Getting started.

11. To program the Flash memory and begin debugging, follow the instructions given in
Section 5.2: Debugging and running your EWARM project on page 12.
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7

7.1
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Using Atollic TrueSTUDIO®

Building an existing TrueSTUDIO project

1. Open the TrueSTUDIO®/STM32 product folder and select the Atollic TrueSTUDIO®
STM32 product name. The program launches and asks for the Workspace location.

Figure 36. TrueSTUDIO workspace launcher dialog box

8 Workspace Launcher g‘

Select a workspace

Atollic TrueSTUDIOE For STMicroelectronics® STM32™ Lite stores your projects in a Folder called a workspace,
Choose a workspace Falder ko use For this session.

Workspace: | C\STM3ZF0_Discovery|FIRMWARE\ProjectiDemonstration! TrueSTUDIO |

» Copy Settings

0

2. Browse to select the STM32FODISCOVERY Demonstration TrueSTUDIO workspace
and click OK to save your settings and to display the Welcome screen. To start using
Atollic TrueSTUDIO®), click Start using TrueSTUDIO.

Figure 37. Atollic TrueSTUDIO®/STM32 Lite welcome screen
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n Start using TresaSTUDIO
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3. The TrueSTUDIO Discovery workspace contains a demo project for the
STM32FODISCOVERY kit. To load this project, select Import... in the File menu to
display the Import dialog box.
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4. In the Import window, open General, select Existing Projects into Workspace and
click Next.

Figure 38. Atollic TrueSTUDIO®/STM32 Lite import source select dialog box
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5. Click Select root directory, browse to the TrueSTUDIO workspace folder and select

the STM32F0-Discovery project.

Figure 39. Atollic TrueSTUDIO®/STM32 Lite import projects dialog box
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6. Inthe Projects pane, select the STM32F0_Discovery_Kit and click Finish.

7. In the Project Explorer, select the STM32F0-Discovery project. Open the Project

menu, and click Build Project.

8. If your project is successfully compiled, the following window is displayed.

Figure 40. TrueSTUDIO® project successfully compiled
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i(Build complete for project STM3ZFO0-Discovery Demcujl

[ Tie consuwed: 24467 ms.
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7.2

Debugging and running your TrueSTUDIO project

In the Project Explorer, select the STM32F0-Discovery project and press F11 to display

the Debug Configuration dialog box.

Figure 41. TrueSTUDIO Debug Configuration dialog box
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7.3

32/46

9. Inthe Main tab, configure the project as shown in Figure 41 and click OK to save your
settings and to program the Flash memory and begin debugging.

Figure 42. TrueSTUDIO Debug window
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The debugger in the Atollic TrueSTUDIO can be used to debug source code at C and
assembly levels, set breakpoints, monitor individual variables and watch events during the
code execution.

To run your application, from the Run menu, select Resume, or alternatively click the
Resume button in the toolbar.

Creating your first application using TrueSTUDIO toolchain

TrueSTUDIO includes a dedicated connection to the STM32FODISCOVERY board. When
choosing this connection, all required files (startup file, firmware library, etc.) are added to
the workspace and sample files are generated in the project folder to simplify the
development. The debug settings are automatically configured by selecting
STM32FODISCOVERY as the evaluation board.

Follow these steps to create your first application using TrueSTUDIO toolchain.

1. Open the TrueSTUDIO®/STM32 product folder and select the Atollic TrueSTUDIO®
STM32 product name. The program launches and asks for the Workspace location.
Browse to select an existing workspace, or enter a new workspace location and click
OK to confirm.
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Figure 43. TrueSTUDIO workspace launcher dialog box

8 Workspace Launcher,
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2. When the Atollic TrueSTUDIO® displays its Welcome window, click Start using
TrueSTUDIO to open the main window. In the File menu, select New and click C
Project.

3.  Name the new project, select STM32 C Project in the Project type pane, then click
Next.

Figure 44. TrueSTUDIO® C Project dialog box
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4. Inthe TrueSTUDIO® Build Settings dialog box, select STM32F0_Discovery as the
Evaluation board, configure the other settings as shown in Figure 45 and click Next.

Figure 45. TrueSTUDIO® Build Settings dialog box

8 C Project |:_|@@

TrueSTUDIO® Build Settings

Select hardware and build configuration
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Endianess
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Remove unused code (dead code remonval)
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@:‘ < Back ][ ek = ][ Einish ][ Cancel

Note: Choosing STM32FODISCOVERY as the evaluation board will configure the project as
follows:

®  Microcontroller: STM32F051R8
® Debug probe: ST-LINK
® Connection: Serial Wire Debug (SWD).
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5. Verify that the JTAG Probe is ST-LINK and click Finish to confirm your settings.
Figure 46. TrueSTUDIO® Misc Settings dialog box
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6. Your project has been created successfully. Atollic TrueSTUDIO® generates target
specific sample files (main.c, stm32fOxx_it.c...) in the Project folder to simplify the
development. You can tailor this project to your needs by modifying these sampile files.

7. To build your project, click Build Project in the Project menu.
8. Your project is compiled successfully.

Figure 47. TrueSTUDIO® project successfully built
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9. Before running your application, establish the connection with the
STM32FODISCOVERY board as described in Section 1: Getting started. To program
the Flash memory and begin debugging, follow the instructions given in Section 7.2:
Debugging and running your TrueSTUDIO project on page 31.
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8 Using TASKING

8.1 Building an existing TASKING project

Follow these steps to build an existing TASKING project.

1.  Open the TASKING VX-toolset for ARM Cortex IDE. The program launches and asks
for the Workspace location.

Figure 48. TASKING workspace launcher dialog box
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2. Browse to select the STM32FODISCOVERY Demonstration TASKING workspace and
click OK to save your settings and to display the Welcome screen. To start using
TASKING, click Go to the workbench.

Figure 49. TASKING VX-Toolset for ARM Cortex welcome screen
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3. The TASKING Discovery workspace contains a demo project for the
STM32FODISCOVERY kit. To load this project, select Import... in the File menu to
display the Import dialog box.

4. In the Import window, open General, select Existing Projects into Workspace and
click Next.

Figure 50. TASKING import source select dialog box
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5.

Click Select root directory, browse to the TASKING workspace folder and select the

STM32F0-Discovery project.

Figure 51. TASKING import projects dialog box
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6.
7.

In the Projects window, select the STM32F0_Discovery_Kit and click Finish.

In the Project Explorer, select the STM32F0-Discovery project. Open the Project

menu, and click Build Project.
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8. If your project is compiled successfully, the following window is displayed.

Figure 52. TASKING project successfully compiled
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8.2 Debugging and running your TASKING project

Figure 53 shows the first step for debugging and running your TASKING project. From the
project toolbar menu, select Debug > Debug STM32F0-Discovery_Demo.

Figure 53. TASKING debug window
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The debugger in TASKING can be used to debug source code at C and assembly levels, set
breakpoints, monitor individual variables and watch events during the code execution.

To run your application, from the Run menu, select Resume, or alternatively click the
Resume button in the toolbar.
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8.3 Creating your first application using TASKING toolchain

The debug session is launched as follows:

1.  Open TASKING VX-Toolset for ARM Cortex. The program launches and asks for the
Workspace location. Browse to select an existing workspace, or enter a new
workspace location and click OK to confirm.

Figure 54. TASKING Workspace Launcher dialog box
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2.  When TASKING displays its Welcome window, click Go to workbench to open the

main window. In the File menu, select New > TASKING VX-toolset for ARM C/C++
Project.

3. Inthe New C/C++ Project dialog box, enter the new Project name; then, in the
Project type box, select TASKING ARM Application and click Next.

Figure 55. TASKING New C/C++ Project dialog box
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4. From the list of supported devices, select STMicroelectronics > STM32F051 >

STM32F0518R8 as shown below in Figure 56.
Figure 56. Processor selection
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5. To configure the project for Manta DISCOVERY board, select Debug > Debug
configurations and choose STMicroelectronics STM32F0 Stingray Discovery Kit.
Choosing STMicroelectronics STM32F0 Stingray Discovery Kit as the evaluation
board, will add automatically the needed linker file and will configure the project as
follows:

—  Microcontroller: STM32F051R8
—  Debug probe: ST-LINK
—  Connection: Serial Wire Debugging (SWD).

Figure 57. Debug configuration
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6. To add source file to your project, right-click on the project from the C/C++ project
window and select Import.

7. From the Import dialog box, select General and the desired file as shown in Figure 58:
TASKING Import dialog box.

Figure 58. TASKING Import dialog box
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8. Click Next. Fill the displayed window as following and then browse to your source file.
Figure 59. Adding a new source file window.
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9. Select main.c file and click Finish.

10. To build your project, click on Project > Build Project from the toolbar menu.
11. Your project is compiled successfully.

Figure 60. Tasking project successfully built
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12. Before running your application, establish the connection with the
STM32FO0DISCOVERY board as described in Section 1: Getting started.
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