

PIC18F2410/2510/4410/4510 Rev. B2 Silicon Errata

The PIC18F2410/2510/4410/4510 Rev. B2 parts you have received conform functionally to the Device Data Sheet (DS39636**D**), except for the anomalies described below. Any Data Sheet Clarification issues related to the PIC18F2410/2510/4410/4510 will be reported in a separate Data Sheet errata. Please check the Microchip web site for any existing issues.

The following silicon errata apply only to PIC18F2410/2510/4410/4510 devices with these Device/Revision IDs:

Part Number	Device ID	Revision ID			
PIC18F2410	0001 0001 011	0 0101			
PIC18F2510	0001 0001 001	0 0101			
PIC18F4410	0001 0000 111	0 0101			
PIC18F4510	0001 0000 101	0 0101			

The Device IDs (DEVID1 and DEVID2) are located at addresses 3FFFEh:3FFFFh in the device's configuration space. They are shown in hexadecimal in the format "DEVID2 DEVID1".

1. Module: MSSP

In SPI Slave mode, with slave select enabled (SSPM<3:0> = 0100), the minimum time between the falling edge of the \overline{SS} pin and first SCK edge is greater than specified in parameter 70 in Table 25-16 and Table 25-17. The updated specification is shown in bold in Table 1.

The minimum time between the \overline{SS} pin low and an SSPBUF write is also 3 Tcy. If the falling edge of the \overline{SS} pin occurs greater than 3 Tcy before the first SCK edge, or loading SSPBUF, the peripheral will function correctly. Also, if SSPBUF is written prior to the \overline{SS} pin going low, the peripheral will function correctly.

Work around

None.

Date Codes that pertain to this issue:

All engineering and production devices.

TABLE 1: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING)

Param No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
	TssL2scH, TssL2scL	SS ↓ to SCK ↓ or SCK ↑ Input	3 Tcy	_	ns	

2. Module: MSSP

With MSSP in SPI Master mode, Fosc/64 or Timer2/2 clock rate, and CKE = 0, a write collision may occur if SSPBUF is loaded immediately after the transfer is complete. A delay may be required after the MSSP Interrupt Flag bit, SSPIF, is set or the Buffer Full bit, BF, is set and before writing SSPBUF. If the delay is insufficiently short, a write collision may occur, as indicated by the WCOL bit being set.

Work around

Add a software delay of one SCK period after detecting the completed transfer and prior to updating the SSPBUF contents. Verify the WCOL bit is clear after writing SSPBUF. If the WCOL is set, clear the bit in software and rewrite the SSPBUF register.

Date Codes that pertain to this issue:

All engineering and production devices.

3. Module: Enhanced Capture/Compare/ PWM (ECCP)

With the ECCP configured for Half-Bridge PWM mode (CCP1M<3:0> = 1110), the output may be corrupted for particular duty cycle selections. Affected duty cycle values are 0 though 3, and every subsequent increment of 4 (i.e., 7, 11, 15, 19, etc.).

Work around

None.

Date Codes that pertain to this issue:

All engineering and production devices.

4. Module: Timer1 and Timer3

For the purposes of this issue, instructions that directly affect the contents of the Timer registers are considered to be writes. This includes CLRF, SETF and MOVF instructions.

Work around

Insert a delay of one instruction cycle between writes to TMRxH and TMRxL. This delay can be a NOP, or any instruction that does not access the Timer registers (Example 1).

EXAMPLE 1: ONE INSTRUCTION DELAY

CLRF TMR1H
MOVLW TlOffset ; 1 Tcy delay
MOVWF TMR1L

Date Codes that pertain to this issue:

All engineering and production devices.

5. Module: Timer1/3

When Timer1 or Timer3 is operated in Asynchronous External Input mode, unexpected interrupt flag generation may occur if an external clock edge arrives too soon following a firmware write to the TMRxH:TMRxL registers. An unexpected interrupt flag event may also occur when enabling the module or switching from Synchronous to Asynchronous mode.

Work around

This issue only applies when operating the timer in Asynchronous mode. Whenever possible, operate the timer module in Synchronous mode to avoid spurious timer interrupts.

If Asynchronous mode must be used in the application, potential strategies to mitigate the issue may include any of the following:

 Design the firmware so it does not rely on the TMRxIF flag or keep the respective interrupt disabled. The timer still counts normally and does not reset to 0x0000 when the spurious interrupt flag event is generated.

- Design the firmware so that it does not write to the TMRxH:TMRxL registers or does not periodically disable/enable the timer, or switch modes. Reading from the timer does not trigger the spurious interrupt flag events.
- If the firmware must use the timer interrupts and must write to the timer (or disable/enable, or mode switch the timer), implement code to suppress the spurious interrupt event, should it occur. This can be achieved by following the process shown in Example 2.

EXAMPLE 2: ASYNCHRONOUS TIMER MODE WORK AROUND TO AVOID SPURIOUS INTERRUPT

```
/Timerl update procedure in asynchronous mode
//The code below uses Timer1 as example
T1CONbits.TMR1ON = 0;
                              //Stop timer from incrementing
PIE1bits.TMR1IE = 0;
                              //Temporarily disable Timer1 interrupt vectoring
IMR1H = 0x00;
                              //Update timer value
TMR1L = 0x00;
T1CONbits.TMR1ON = 1;
                              //Turn on timer
//Now wait at least two full T1CKI periods + 2T_{\mathrm{CY}} before re-enabling Timer1 interrupts.
//Depending upon clock edge timing relative to TMR1H/TMR1L firmware write operation,
^{\prime}/\text{a} spurious TMR1IF flag event may sometimes assert. If this happens, to suppress
//the actual interrupt vectoring, the TMR1IE bit should be kept clear until
//after the "window of opportunity" (for the spurious interrupt flag event has passed).
//After the window is passed, no further spurious interrupts occur, at least
//until the next timer write (or mode switch/enable event).
while(TMR1L < 0x02);
                              //Wait for 2 timer increments more than the Updated Timer
                              //value (indicating more than 2 full T1CKI clock periods elapsed)
NOP();
                              //Wait two more instruction cycles
NOP();
PIR1bits.TMR1IF = 0;
                              //Clear TMR1IF flag, in case it was spuriously set
PTE1bits.TMR1TE = 1;
                              //Now re-enable interrupt vectoring for timer 1
```

6. Module: Enhanced Universal Synchronous Receiver Transmitter (EUSART)

One bit has been added to the BAUDCON register and one bit has been renamed. The added bit is RXDTP and is in the location, BAUDCON<5>. The renamed bit is the TXCKP bit (BAUDCON<4>), which had been named SCKP.

The TXCKP (BAUDCON<4>) and RXDTP (BAUDCON<5>) bits enable the TX and RX signals to be inverted (polarity reversed).

Register 17-3, on page 194, will be changed as shown on page 3.

Work around

None required.

Date Codes that pertain to this issue:

All engineering and production devices.

7. Module: 10-Bit Analog-to-Digital (A/D) Converter

When the A/D clock source is selected as 2 Tosc or RC (when ADCS2:ADCS0 = 000 or $\times11$), in extremely rare cases, the EIL (Integral Linearity Error) and EDL (Differential Linearity Error) may exceed the data sheet specification at codes 511 and 512 only.

Work around

Select a different A/D clock source (4 Tosc, 8 Tosc, 16 Tosc, 32 Tosc, 64 Tosc) and avoid selecting the 2 Tosc or RC modes.

Date Codes that pertain to this issue:

All engineering and production devices.

REVISION HISTORY

Rev A Document (10/2006)

First revision of this document. Silicon issues 1-2 (MSSP), 3 (ECCP) and 4 (Timer1 and Timer3).

Rev B Document (4/2007)

Added silicon issue 5 (Enhanced Universal Synchronous Receiver Transmitter – EUSART).

Rev C Document (8/2007)

Added silicon issue 6 (10-Bit A/D Converter).

Rev D Document (01/2015)

Added silicon issue 5 (Timer 1/3).

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2006-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63276-940-4

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support Web Address:

www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago

Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi. MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323

Fax: 317-773-5453

Los Angeles Mission Vieio. CA

Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongging

Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou

Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-3019-1500

Japan - Osaka

Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo

Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung

Tel: 886-7-213-7830

Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen

Tel: 45-4450-2828

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf

Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0

Fax: 49-89-627-144-44 **Germany - Pforzheim**

Tel: 49-7231-424750

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw

Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90

Fax: 34-91-708-08-91

Sweden - Stockholm

Tel: 46-8-5090-4654 **UK - Wokingham**

Tel: 44-118-921-5800 Fax: 44-118-921-5820

03/25/14