SANYO SANYO Semiconductors

<u>APPLICATION NOTE</u>

An ON Semiconductor Company

Bi-CMOS IC LV8402GP 2ch Forward/Reverse Motor Driver

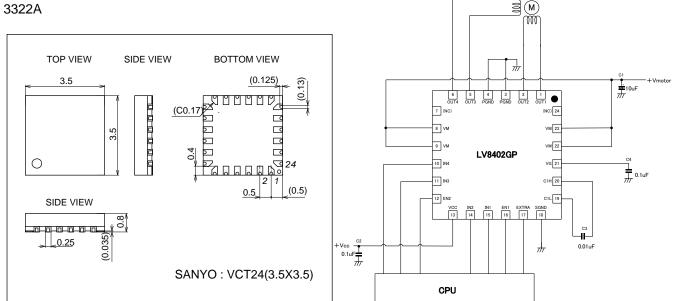
Features and Benefits

- 2ch forward/reverse motor driver.
- Low power consumption.
- Low-ON resistance 0.75Ω.

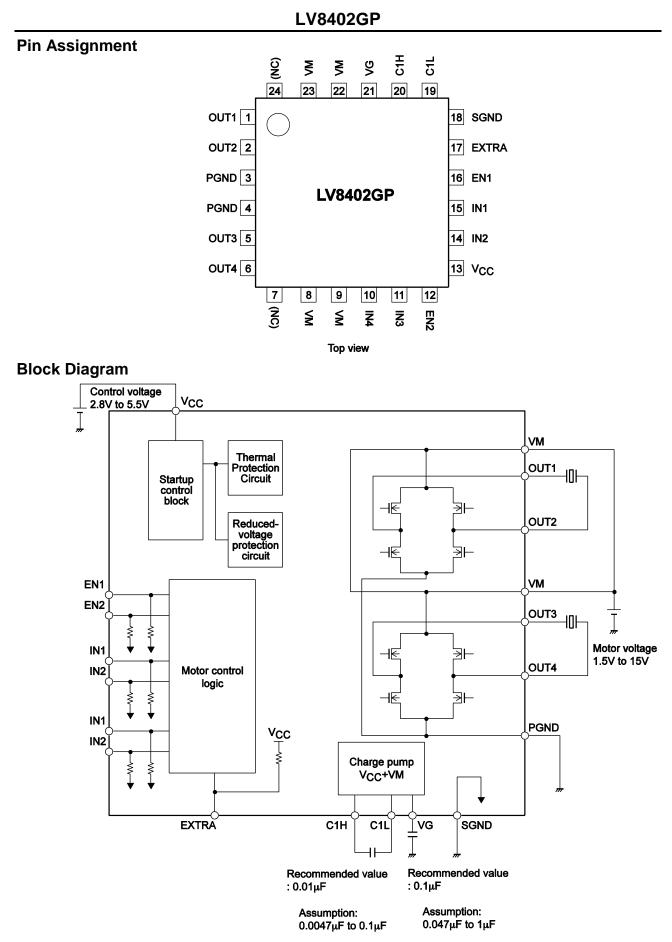
- Built-in low voltage reset and thermal shutdown circuit.
- 4 mode function forward/reverse, brake and standby.
- Built-in charge pump.
- Built-in EXTRA mode for PWM port reduction when a motor drives by two phase excitation.

Description

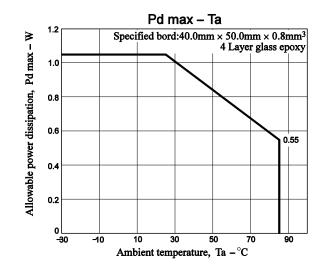
LV8402GP is a 2ch forward/reverse motor driver IC using D-MOS FET for output stage. As MOS circuit is used, it supports the PWM input. Its features are that the on resistance (0.75 Ω typ) and current dissipation are low. It also provides protection functions such as heat protection circuit and reduced voltage detection and is optimal for the motors that need high-current.


Application include:

- · SLR-Camera lens anti-shake/Iris /auto focus control
- · LCD projector lens focus /pan-tilt drive
- · Battery powered toys and games
- Portable printers/scanners
- · Robotic actuators and pumps


Package Dimensions

unit : mm (typ)



SANYO Semiconductor Co., Ltd. http://semicon.sanyo.com/en/network

* Connect a kickback absorption capacitor as near as possible to the IC. Coil kickback may cause increase in VM line voltage, and a voltage exceeding the maximum rating may be applied momentarily to the IC, which results in deterioration or damage of the IC

Specifications Maximum Ratings at Ta = 25°C, SGND = PGND = 0V

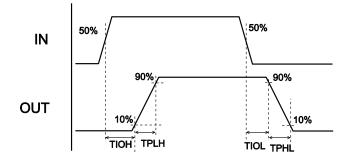
Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage (for load)	VM max		-0.5 to 16.0	V
Power supply voltage (for control)	V _{CC} max		-0.5 to 6.0	V
Output current	I _O max		1.4	А
Output peak current	I _O peak	$t \leq 10ms$	2.5	А
Input voltage	V _{IN} max		-0.5 to V _{CC} +0.5	V
Allowable power dissipation	Pd max	Mounted on a specified board*	1050	mW
Operating temperature	Topr		-30 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

* Specified board : 40.0mm \times 50.0mm \times 0.8mm, 4 Layer glass epoxy board.

Allowable Operating Conditions at Ta = 25°C, SGND = PGND = 0V

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage (VM pin)	VM		1.5 to 15.0	V
Power supply voltage (V _{CC} pin)	VCC		2.8 to 5.5	V
Input signal voltage	V _{IN}		0 to V _{CC}	V
Input signal frequency	f max		200	kHz

Electrical Characteristics Ta = 25°C, V_{CC} = 3.0V, VM = 6.0V, SGND = PGND = 0V, unless otherwise


specified.

Parameter			Conditions					
Para	ameter	Symbol	Conditions	Remarks	min	typ	max	Unit
Standby load current drain		IMO	EN1=EN2=0V, EXTRA=3V	1			1.0	μΑ
Standby control	l current drain	ICO	EN1=EN2=IN1=IN2=IN3=IN4=0V	2			1.0	μΑ
Operating contr	rol current drain	IC1	EN=3V, with no load	3		0.85	1.2	mA
High-level input	t voltage	VIH	$2.7 \le V_{CC} \le 5.5 V$		0.6×V _{CC}		VCC	V
Low-level input	voltage	VIL	$2.7 \leq V_{CC} \leq 5.5 V$		0		0.2×V _{CC}	V
High-level input (IN1, IN2, IN3	t current , IN4 , EN1, EN2)	ін	V _{IN} = 3V	4		15	25	μA
Low-level input (IN1, IN2, IN3	current , IN4 , EN1, EN2)	۱ _{IL}	V _{IN} = 0V	4	-1.0			μΑ
Pull-down resis	tance value	RDN	IN1, IN2, IN3 , IN4 , EN1, EN2	4	100	200	400	kΩ
0 1	High-level input current 2 (IN1, IN2, IN3, IN4, EN1, EN2)		V _{IN} = 3V	5			1.0	μA
•	Low-level input current 2 (IN1, IN2, IN3, IN4, EN1, EN2)		V _{IN} = 0V	5	-25	-15		μA
Pull-up resistance value		RUP	EXTRA	5	100	200	400	kΩ
Charge pump v	roltage	VG	V _{CC} + VM		8.5	9.0	9.5	V
Output ON resistance 1		RON1	Sum of top and bottom sides ON resistance.	6		0.75	1.2	Ω
Output ON resistance 2		RON2	Sum of top and bottom sides ON resistance. V _{CC} = 2.8V	6		1.0	1.5	Ω
Low-voltage detection voltage		VCS	V _{CC} pin voltage is monitored	7	2.15	2.30	2.45	V
Thermal shutdown temperature		Tth	Design guarantee value *	8	150	180	210	°C
Output block	Turn-on time	TPLH	When no load. Design guarantee value *	9		0.3	0.5	μS
			When no load.	10		100	200	nS
	Turn-off time	TPHL	When no load. Design guarantee value *	9		0.35	0.6	μS
			When no load.	10		100	200	nS

* : Design guarantee value and no measurement is preformed.

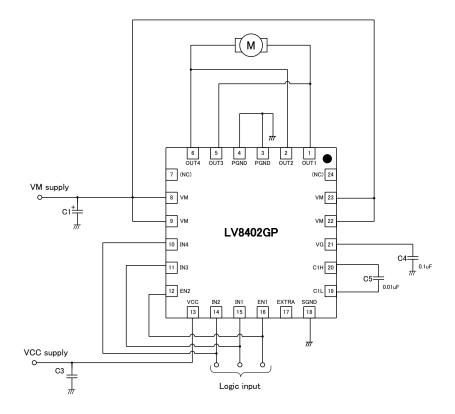
Remarks

- 1. Current consumption when output at the VM pin is off.
- 2. Current consumption at the V_{CC} for standby mode.
- 3. EN1=3V (IC starts) shows the current consumption of the V_{CC} pin.
- 4. Pins IN 1, 2, 3, 4, EN1, and EN2 are all pulled down according to resistance.
- 5. EXTRA pin is pulled up according to resistance.
- 6. Sum of upper and lower saturation voltages of OUT pin divided by the current.
- 7. All power transistors are turned off if a low V_{CC} condition is detected.
- 8. All output transistors are turned off if the thermal protection circuit is activated. They are turned on again as the temperature goes down.
- 9. Rising time from 10 to 90% and falling time from 90 to 10% are specified.
- 10. The change of the voltage of the input pin provides for time until the voltage of the terminal OUT changes by 10% at the time of 50% of V_{CC} .

Truth Table

EXTRA	EN1 (EN2)	IN1 (IN3)	IN2 (IN4)	OUT1 (OUT3)	OUT2 (OUT4)	Charge pump	Mode
н	Н	Н	Н	Z	Z	ON	Stand-by
		н	L	L	н		Reverse
		L	н	н	L		Forward
		L	L	L	L		Brake
	L	-	-	L	L	OFF	Stand-by
L	Н	н	-	L	н	ON	Reverse
		L	-	н	L		Forward
	L	-	-	L	L		Brake

- : denotes a don't care value. Z: High-Impedance


• In the standby mode, current consumption vanishes.

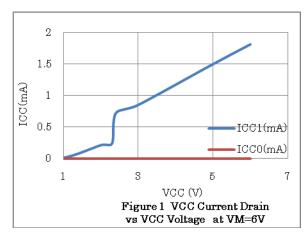
* All power transistors turn off and the motor stops driving when the IC is detected in low voltage or thermal protection mode.

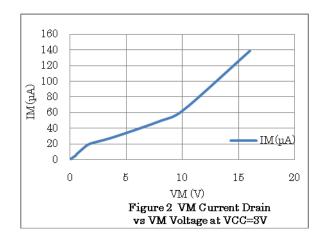
Usage Notes

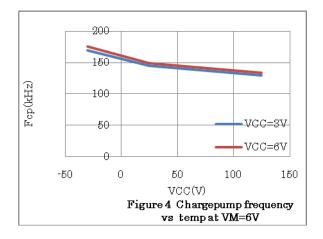
· 2ch parallel connection

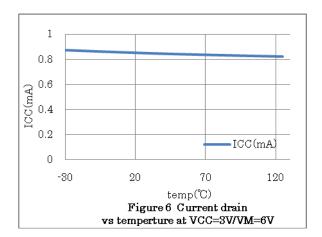
If use of high current is required, you can connect 2 H Bridges in parallel to drive 1 DC motor. By connecting IN1-IN3, IN2-IN4, EN1-EN2, OUT1-OUT3, and OUT2-OUT4 respectively, ON resistance is reduced by half and current capacity doubles.

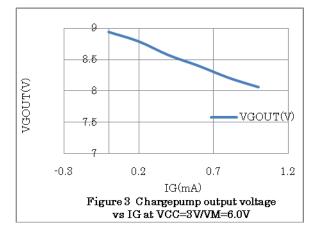
Charge pump circuit is integrated.

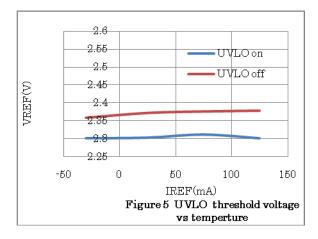

VG voltage (VM+VCC) drives the gate of the upper power transistor.

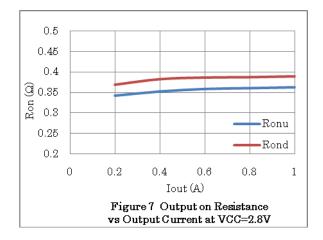

VCC voltage drives the gate of the lower power transistor.

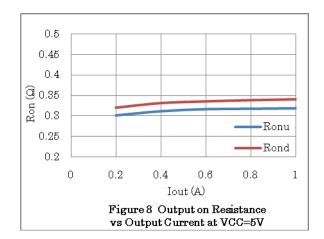

The characteristics of the on resistance of output power transistor is independent of VM voltage, but dependent on VCC voltage.

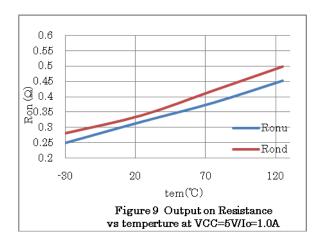

Pin Fun	ctions		
Pin No.	Pin name	Description	Equivalent circuit
20 21	C1H VG	Step-up capacitor connection pin.	C1H
17	EXTRA	Extra logic pin. (Logic switch for PWM)	EXTRA ^V CC [×] [×] [×] [×] [×] [×] [×] [×]
16 12 15 14 11 10	EN1 EN2 IN1 IN2 IN3 IN4	Driver output switching. Logic enable pin. (Pull-down resistor incorporated)	Vcc 200kΩ
1 2 5 6	OUT1 OUT2 OUT3 OUT4	Driver output.	
8, 9, 22, 23	VM	Motor block power supply.	
13	VCC	Logic block power supply.	
18	SGND	Control block ground.	
3, 4	PGND	Driver block ground.	

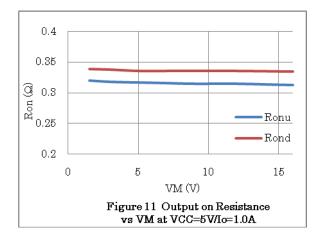


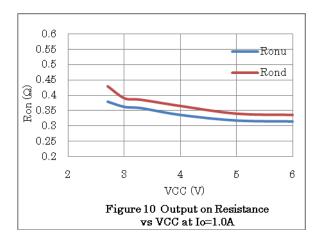


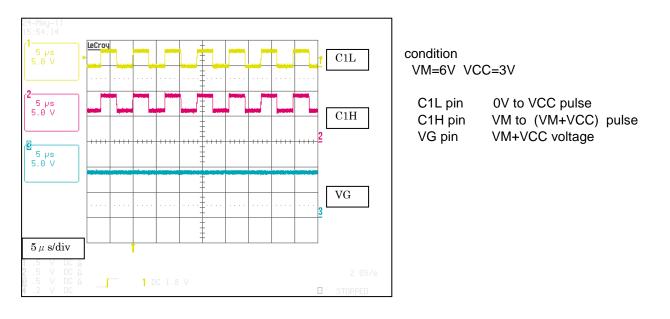











APPLICATION INFORMATION

1.Charge pump circuit

In LV8402GP, Nch-MOSFET is used in the upper and lower output transistor. And to drive the gate of the upper Nch-MOSFET, charge pump circuit is integrated.

By connecting capacitor between C1L and C1H and another capacitor between VG and SGND, the voltage of VM+VCC is generated in VG.

The recommended capacitor between C1L and C1H: 0.01μ F/25V The assumed value: 0.0047μ F to 0.1μ F. The recommended capacitor between VG and SGND: 0.1μ F/25V The assumed value: 0.047μ F to 1μ F. The capacitance influences the capability of load current of VG voltage.

Charge pump waveform example

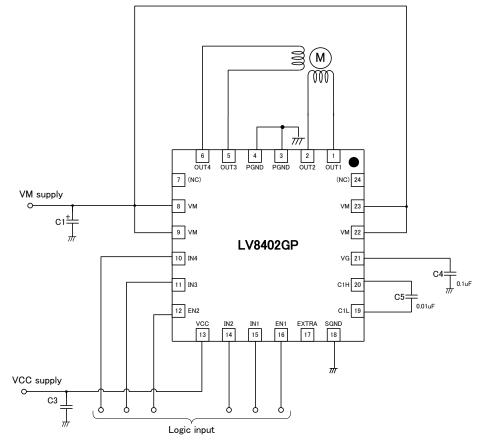
2. Thermal Shutdown

The LV8402GP will disable the outputs if the junction temperature reaches 180°C.

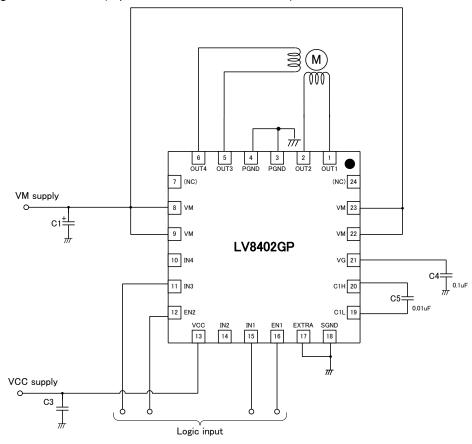
When temperature falls 30 °C, the IC outputs a set output mode.

$$TSD = 180^{\circ}C (typ)$$

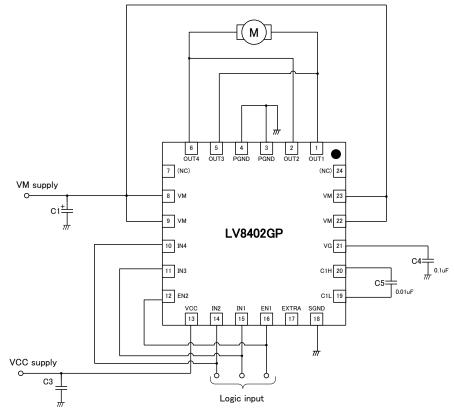
$$\Delta TSD = 30^{\circ}C (typ)$$


3. Low voltage protection function

When the power supply voltage is as follows 2.3V in LV8402GP, OFF does the output.

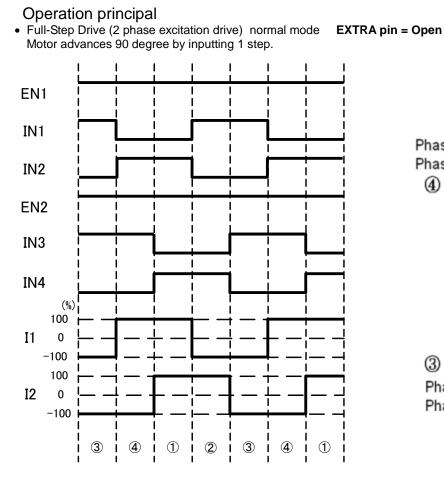

When the power supply voltage is as above typical 2.38V, the IC outputs a set state.

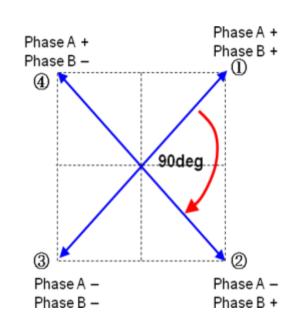
Motor connecting figure


• stepping motor connect (1-2phase excitation, 2phase excitation nomal mode)

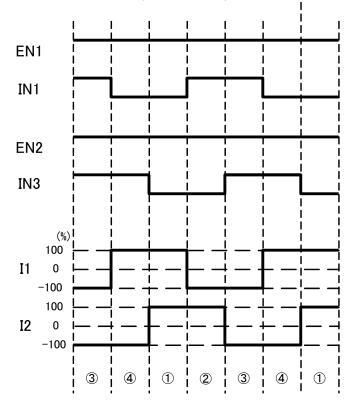
· stepping motor connect (2-phase excitation extra mode)

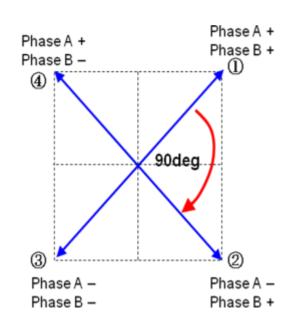
- 2 DC motors connect Μ М TT6 OUT4 5 OUT3 2 OUT2 3 PGND 4 PGNE 1 7 (NC) (NC) 24 VM supply 8 VM VM 23 C1[±] 9 VM VM 22 7 LV8402GP 10 IN4 VG 21 C4 0.1uF 11 IN3 C1H 20 C5= 0.01uF C1L 19 12 EN2 IN1 15 IN2 14 EN1 EXTRA 13 16 17 18 VCC supply 0 C3 δ δ 9 Υ δ # Logic input
- · DC motor parallel connect

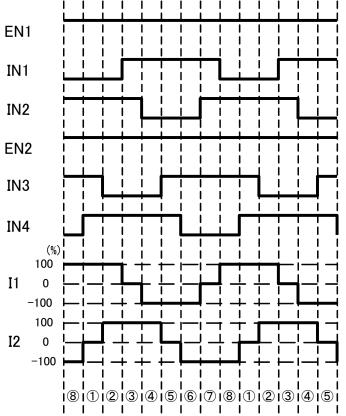


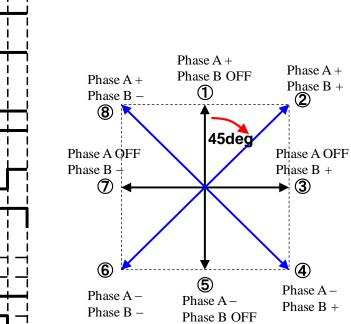

The capacitor C1 and C3 are used to stabilize power supply. And capacitance is variable depends on board layout, capability of motor or power supply.

Recommendation range for C1: approx. $0.1 \mu F$ to $10 \mu F$

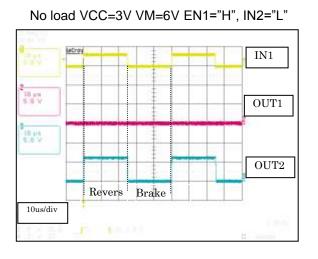

Recommendation range for C2: approx. $0.01 \mu F$ to $1 \mu F$

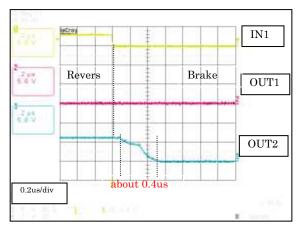

In order to set an optimum capacitance for stable power supply, make sure to confirm the waveform of the supply voltage of a motor under operation

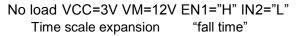


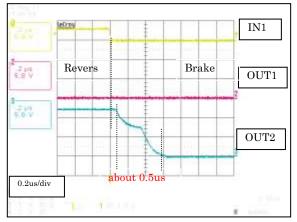


• Full-Step Drive (2 phase excitation drive) EXTRA mode **EXTRA pin = Low** Motor advances 90 degree by inputting 1 step.

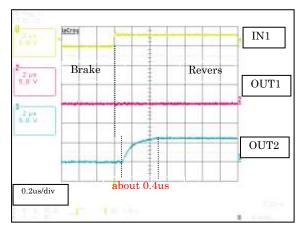


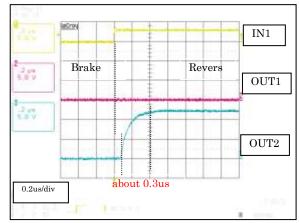



 Half-Step Drive (1-2 phase excitation drive) Motor advances 45 degree by inputting 1 step.

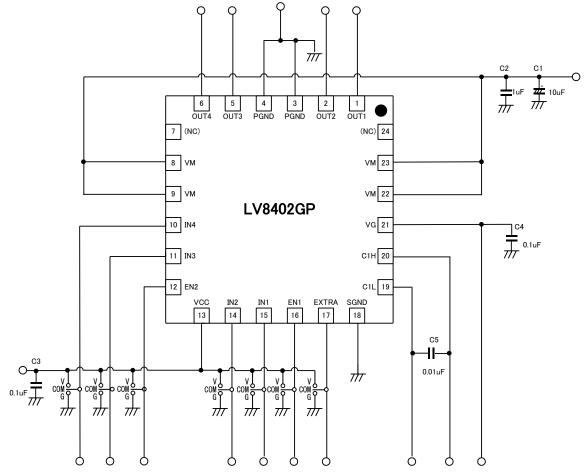

Waveform example

No load VCC=3V VM=6V EN1="H" IN2="L" Time scale expansion "fall time"



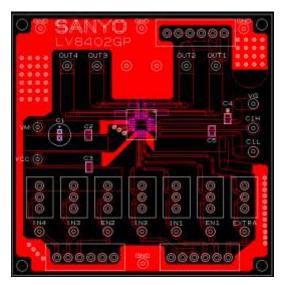

No load VCC=3V VM=6V EN="H", IN2="H"

No load VCC=3V VM=6V EN1="H" IN2="L" Time scale expansion "rise time"

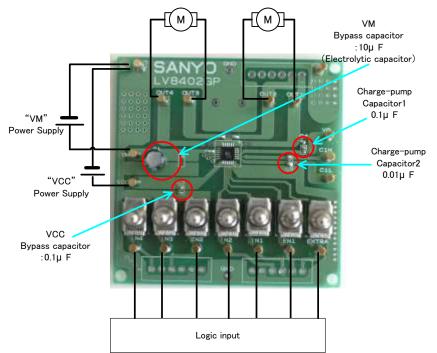


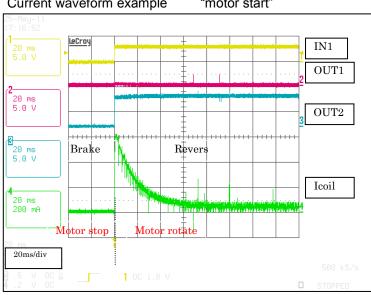
No load VCC=3V VM=12V EN1="H" IN2="L" Time scale expansion "rise time"

Evaluation board description


1. Evaluation board circuit diagram

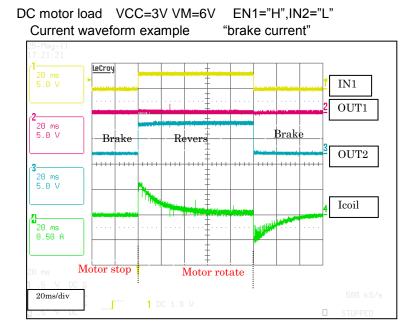
Board view


Board layout

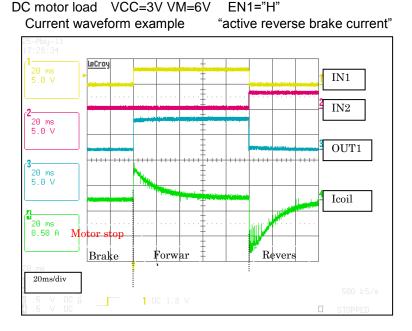

Designator	Qty	Description	Value	Tol	Footprint	Manufacturer	Manufacturer Part Number	Substitution Allowed	Lead Free	
IC1	1	Motor Driver			VCT24	SANYO semiconductor	LV8548M	No	Yes	
C1	1	VM Bypass capacitor	10µF 50V			SUN Electronic Industries	50ME10HC	Yes	Yes	
C3	1	VCC Bypass capacitor	0.1µF 100V			murata	GRM188R72A 104KA35D	Yes	Yes	
C4	1	Charge pump capacitor1	0.1µF 100V			murata	GRM188R72A 104KA35D	Yes	Yes	
C5	1	Charge pump capacitor2	0.1µF 100V			murata	GRM188B11H 103K	Yes	Yes	
SW1-SW7	7	Switch				MIYAMA	MS-621-A01	Yes	Yes	
TP1-TP14	14	Test points				MAC8	ST-1-3	Yes	Yes	

Bill of Materials for LV8402GP Evaluation Board

2. Two DC motor drive


- Connect OUT1 and OUT2, OUT3 and OUT4 to a DC motor each.
- Connect the motor power supply with the terminal VM, the control power supply with the terminal VCC. Connect the GND line with the terminal GND.
- DC motor becomes the predetermined output state corresponding to the input state by inputting a signal such as the following truth value table into EN1,EN2,IN1~IN4.
- •See the table in p.5 for further information on input logic.

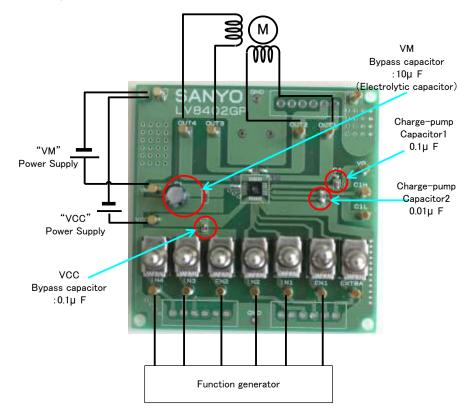
DC motor load VCC=3V VM=6V EN1="H",IN2="L" Current waveform example "motor start"


High current flows when the DC motor starts to rotate. After a while, induced voltage "Ea" is generated from motor and current value gradually decreases in the course of motor rotation.

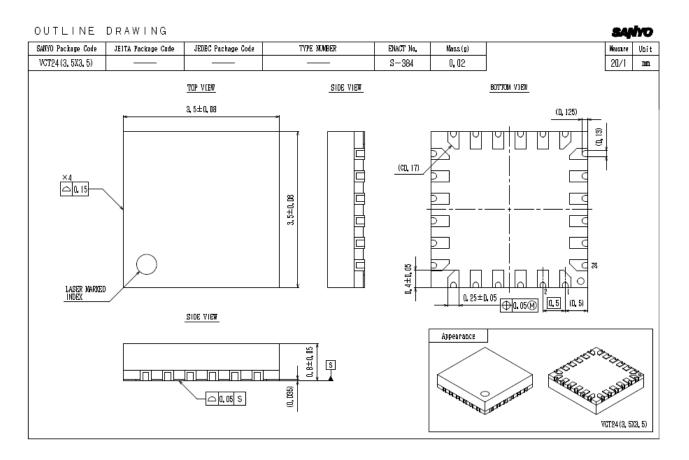
Given that the coil resistor is Rcoil, motor supply voltage is Vm, the motor current Im is obtained as follows: Im= (Vm-Ea) /Rcoil

By setting brake mode while the DC motor is under rotation, DC motor becomes short-brake state and thereby decreases rotation count rapidly.

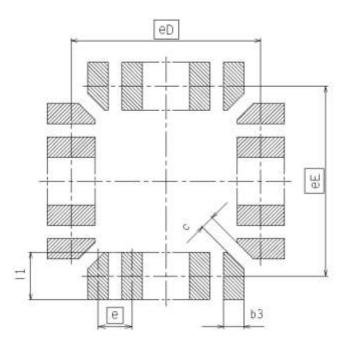
In this case, the current of Im=Ea/Rcoil flows reversely due to the induced voltage Ea generated while the motor was under rotation. And by stopping the rotation of DC motor, Ea becomes 0. Therefore, the current also becomes 0.



If a direction of rotation is switched while the DC motor is under rotation, torque for reverse rotation is generated. Therefore, the change of rotation takes place more abruptly.


In this case, since the voltage of VM is added as well as the induced voltage Ea that occurred during the motor rotation, the following current flows: Im= (VM+Ea) /Rcoil

Since this driving method generates the highest current at the startup of DC motor, if the current value exceeds the lomax, it is recommended to set brake mode between forward and reverse to reduce induced voltage.


3. One stepping motor drive

- Connect a stepping motor with OUT1, OUT2, OUT3 and OUT4.
- Connect the motor power supply with the terminal VM, the control power supply with the terminal VCC. Connect the GND line with the terminal GND.
- STP motor drives it in an Full-Step, Half-Step by inputting a signal such as follows into EN1,EN2,IN1~IN4.
- For input signal to function generator, refer to p.12 and p.13. To reverse motor rotation, make sure to input signal to outward direction.

Mounting Pad Sketch

(Unit:am)

Reference symbol	Packages name									
	VCT/UCT16(2,6)(2,6)	VGT/UCT28(2,6)(2,6)	VCT/UCT20 (3, 003, 0)	VCT/UCT24(3,003,0)	VCT/UCT24(3, 503, 5)					
e0	2,30	2, 30	2,70	2,70	3, 20					
ėΕ	2,30	2, 30	2, 70	2,70	3,20					
8	0.50	8, 40	0, 50	0, 43	0, 50					
ba.	0, 30	0,19	0, 30	0, 19	0,30					
1	0,70	0,70	0,70	0, 70	0,70					
C	0, 20	0,20	0,20	0,20	0.20					

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of June, 2011. Specifications and information herein are subject to change without notice.